N18 Gort to Crusheen Road Scheme

Site Name: Sranagalloon 1
Ministerial Direction No.: 044
Excavation Registration No.: E3713
Burnt Mound
Final Report
On behalf of Galway County Council

Site Director: Joe Nunan
November 2009

Irish Archaeological Consultancy
PROJECT DETAILS

<table>
<thead>
<tr>
<th>Project Reference No.</th>
<th>A044</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>N18 Gort to Crusheen Road Scheme</td>
</tr>
<tr>
<td>Ministerial Direction Reference No.</td>
<td>A044</td>
</tr>
<tr>
<td>NMS Registration Number</td>
<td>E3713</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation Director</td>
<td>Joe Nunan</td>
</tr>
<tr>
<td>Senior Archaeologist</td>
<td>Shane Delaney</td>
</tr>
<tr>
<td>Consultant</td>
<td>Irish Archaeological Consultancy Ltd, 120b Greenpark Road, Bray, Co. Wicklow</td>
</tr>
<tr>
<td>Client</td>
<td>Galway County Council</td>
</tr>
<tr>
<td>Site Name</td>
<td>Sranagalloon 1</td>
</tr>
<tr>
<td>Site Type</td>
<td>Burnt Mound</td>
</tr>
<tr>
<td>Townland</td>
<td>Sranagalloon</td>
</tr>
<tr>
<td>Parish</td>
<td>Inchicronan</td>
</tr>
<tr>
<td>County</td>
<td>Clare</td>
</tr>
<tr>
<td>NGR (Easting)</td>
<td>140187</td>
</tr>
<tr>
<td>NGR (Northing)</td>
<td>190023</td>
</tr>
<tr>
<td>Chainage</td>
<td>16050</td>
</tr>
<tr>
<td>Height m OD</td>
<td>28m OD</td>
</tr>
<tr>
<td>RMP No.</td>
<td>N/A</td>
</tr>
<tr>
<td>Excavation Dates</td>
<td>22 January – 6 February 2008</td>
</tr>
<tr>
<td>Excavation Duration</td>
<td>12 Days</td>
</tr>
<tr>
<td>Report Type</td>
<td>Final</td>
</tr>
<tr>
<td>Report Date</td>
<td>26 November 2009</td>
</tr>
<tr>
<td>Report By</td>
<td>IAC Ltd</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The excavation was carried out in accordance with the Directions issued to Galway County Council by the Minister for Environment, Heritage and Local Government under Section 14A (2) of the National Monuments Acts 1930–2004 and the terms of the Contract between Galway County Council and Irish Archaeological Consultancy Ltd.

CONSULTING ENGINEERS
Project Director – David Cattley, Jacobs Engineering
Senior Engineer – David Lea, Jacobs Engineering
Resident Engineer – Ian Falconer, Jacobs Engineering

NRDO GALWAY COUNTY COUNCIL
Project Engineer – Fintan O’Meara
Project Archaeologist – Jerry O’Sullivan

NATIONAL MONUMENTS DIVISION, DEHLG
Archaeologist – Martin Reid

IRISH ANTIQUITIES DIVISION, NATIONAL MUSEUM OF IRELAND

REPORT PRODUCTION
Report Formatting and Editing – Shane Delaney and Maeve Tobin
Report Research – Shane Delaney and Eimear O’Connor
Axe illustration by Alva McGowan
ABSTRACT

Irish Archaeological Consultancy Ltd (IAC), funded by Galway County Council and the National Roads Authority (NRA), undertook the excavation of a burnt mound under Ministerial Directions at the site of Sranagalloon 1 along the proposed N18 Gort to Crusheen road scheme (Figure 1). The following report describes the results of archaeological fieldwork at Sranagalloon 1. The area was fully excavated by Joe Nunan under Ministerial Directions A044 and Registration Number E3713 issued by the Department of Environment, Heritage and Local Government (DEHLG) in consultation with the National Museum of Ireland. The fieldwork took place between January and February 2008.

This site at Sranagalloon, Co. Clare was located at NGR 140187/190023 and was situated at 28 m OD. It was located in a flat pasture field and had been cut by a drain. The field was prone to flooding.

The site consisted of a spread of heat-affected stones and charcoal-rich, silty clay measuring 9.3 m x 5.95 m to a depth of 0.42 m. A modern open drain cut the burnt mound at its southern edge. The open drain extended in an east–west direction through the burnt spread and also cut away the southern limits of a trough.

All that remained of the trough were fragments of timber from its base. The cut of the trough was sub-oval in plan, 2.20 m x 1.15 m x 0.44 m, with a sharp break of slope at the top, steep irregular sides and a flat base. A large, flat stone, orientated east–west, was placed at the northern edge of the trough and smaller slab-like stones were placed on the eastern and western edges. It is possible these stones were placed in situ as retaining slabs to prevent the stone debris tumbling back into the trough.

A fragment of hazel charcoal from the base of the trough returned a 2 Sigma calibrated date of 1433–1313 BC (3106±26 BP: UBA 12759), placing the site in the middle Bronze Age. A sample of hazel charcoal from the lower layer of the burnt spread returned a 2 Sigma calibrated date of 1260–BC (2925±38 BP: UBA 12758). A Neolithic polished stone axehead was also recovered from the site.
CONTENTS

1 INTRODUCTION .. 1
 1.1 General ... 1
 1.2 The Development ... 1
 1.3 Archaeological Requirements .. 1
 1.4 Methodology .. 2

2 EXCAVATION RESULTS .. 3
 2.1 Phase 1: Natural Drift Geology .. 3
 2.2 Phase 2: Bronze Age Activity ... 3
 2.2.1 Wood-Lined Trough .. 3
 2.2.2 Revetment Stones ... 4
 2.2.3 Burnt Spread and Trough Fill ... 4
 2.3 Phase 3: Modern Drain/Canalised Stream .. 4
 2.3.1 Topsoil .. 5

3 SYNTHESIS AND DISCUSSION ... 6
 3.1 Landscape Setting .. 6
 3.2 Bronze Age Archaeological Landscape .. 6
 3.3 Typology of Burnt Mounds ... 10
 3.4 Discussion .. 11
 3.4.1 Phase 1: Natural Drift Geology ... 11
 3.4.2 Phase 2: Bronze Age Activity ... 11
 3.4.3 Phase 3: Modern Drain/Canalised Stream ... 12
 3.4.4 Phase 4: Topsoil ... 13

4 CONCLUSIONS .. 14

5 BIBLIOGRAPHY ... 15
 5.1 References ... 15
 5.2 Other Sources .. 17

PLATES .. 19

APPENDIX 1 CATALOGUE OF PRIMARY DATA .. I
 Appendix 1.1 Context Register .. i
 Appendix 1.2 Catalogue of Artefacts .. ii
 Appendix 1.3 Catalogue of Ecofacts .. iii
 1.3.1 Animal bone/burnt bone .. iii
 1.3.2 Charcoal .. iii
 1.3.3 Charred seeds ... iii
 1.3.4 Timber samples .. iii
 1.3.5 Shell ... iii
 Appendix 1.4 Archive Checklist ... iv

APPENDIX 2 SPECIALIST REPORTS ... V
 Appendix 2.1 Radiocarbon Dating Results – QUB Laboratory vii
 Appendix 2.2 Charcoal Remains – Sarah Cobain ... xi
 Appendix 2.3 Charcoal and Wood ID Report – Ellen O’Carroll xxxi
 Appendix 2.4 Petrological Analysis – Stephen Mandal ... xxxix
 Appendix 2.5 Lithics – Dr Farina Sternke ... xliv
 Appendix 2.6 Stone Axe Report – Irish Stone Axe Project .. xlix
 Appendix 2.7 Catalogue of Clay Pipes – Maeve Tobin .. ii

APPENDIX 3 LIST OF RMP SITES IN AREA .. LIII
APPENDIX 4 LIST OF N18 GORT TO CRUSHEEN SCHEME SITE NAMES ..LIV

FIGURES

List of Plates
Plate 1: Pre-exavagation view of the site, looking south
Plate 2: The trough C8 under excavation, looking east
Plate 3: The trough C8, mid-exavagation, looking north
Plate 4: Post-exavagation view of the site and trough C8, looking south

List of Figures
Figure 1: E3713 Sranagalloon 1 location on OSI Discovery Series background
Figure 2: E3713 Sranagalloon 1 showing Recorded Monuments with OSI background
Figure 3: E3713 Sranagalloon 1 mid-exavagation plan
Figure 4: E3713 Sranagalloon 1 site plan
Figure 5: E3713 Sranagalloon 1 sections
Figure 6: E3713 Sranagalloon 1 illustration (by Alva Mac Gowan) and photograph of stone axehead E3713:10:1
1 INTRODUCTION

1.1 General
This report describes the excavation of Sranagalloon 1 (Figures 1–3; Plate 1), in the
townland of Sranagalloon, Co. Clare, undertaken by Joe Nunan for IAC Ltd, on
behalf of Galway County Council and the NRA. It was carried out as part of the
archaeological mitigation programme of the N18 Gort to Crusheen road scheme. The
excavation was undertaken to offset the adverse impact of road construction on
known and potential subsoil archaeological remains in order to preserve the site by
record.

The site was not a Recorded Monument but was first identified during testing carried
out David Bayley in summer 2007 (Ministerial Direction No. A044, NMS Licence No.
07E0456). All features identified during the assessment phase were subsequently
re-identified and excavated during the full excavation phase of the site which took
place between 22 January and 6 February 2008 with a team of 1 director, 1
supervisor and 6 assistant archaeologists.

The site was located approximately 2.20 km to the north of Crusheen cross road and
c. 60 m west of the Crusheen to Tubber road (Clare OS sheet 18).

The site was assigned the following identification data:

Site Name: Sranagalloon 1; Ministerial Direction No.: A044; NMS Registration No.: E3713; Route Chainage (Ch): 16050; NGR: 140187/190023.

1.2 The Development
The N18 Gort to Crusheen scheme involves the construction of a total of 44 km of
road to include mainline roadworks (22 km), associated side roads (10 km) and
access tracks (12 km). The road will have twin 7 m carriageways, 2.5 m hard
shoulders adjacent to the verges and a median with a minimum width of 2.6 m which
includes two 1 m hard strips. The selected route bypasses the town of Gort to the
east and the village of Crusheen to the west.

1.3 Archaeological Requirements
The archaeological requirements for the N18 Gort to Crusheen road scheme were
defined in the Ministerial Directions issued to Galway County Council by the Minister
for Environment, Heritage and Local Government under Section 14A (2) of the
National Monuments Acts 1930–2004 and in the terms of the contract between
Galway County Council and Irish Archaeological Consultancy Ltd. These instructions
formed the basis of all archaeological works undertaken for this development. The
archaeological excavation works under this contract were located between the
townlands of Glenbrack, Co. Galway, and Carrowdotia, Co. Clare.

The proposed N18 was subjected to an Environmental Impact Assessment, the
archaeology and cultural history section of which was carried out by Babtie Pettit Ltd
in 2006. The Record of Monuments and Places, the Sites and Monuments Record,
Topographical files of the National Museum of Ireland, aerial photography, and
documentary sources were all consulted. Two phases of geophysical survey were
conducted. The main phase was by RSKENSIR (Bartlett 2004) during the preparation
of the EIA (Babtie Pettit Ltd 2006). A supplementary survey was carried out in
Ballyboy by Target Geophysics Ltd (Target Geophysics Ltd 2007). As a result of the
paper survey, field inspections, geophysical survey, archaeological testing and
archaeological monitoring, a total of 22 fully recorded manual excavations were
carried out on this section of the overall route alignment. In some cases where a
number of sites of similar type were located together in a single townland, the sites were excavated under one excavation number.

Phase 1 archaeological testing was completed by IAC Ltd and Phase 2 excavation of the sites identified during testing was conducted by IAC Ltd on behalf of Galway County Council and the NRA.

1.4 Methodology
The presence of archaeological remains beneath the topsoil layer was confirmed by machine-cut test trenches. Following testing, the topsoil was reduced to the interface between topsoil and natural subsoil using a 20 tonne mechanical excavator equipped with a flat toothless bucket under strict archaeological supervision. The remaining topsoil was removed by the archaeological team with the use of shovels, hoes and trowels in order to expose and identify the archaeological remains. A site grid was set up at 10 m intervals and was subsequently calibrated to the national grid using GPS survey equipment.

All features were subsequently fully excavated by hand and recorded using the single context recording system with plans and sections being produced at a scale of 1:50, 1:20 or 1:10 as appropriate.

A complete photographic record was maintained throughout the excavation. Digital photographs were taken of all features and of work in progress.

An environmental strategy was devised at the beginning of the excavations. Features exhibiting large amounts of carbonised material were targeted. Animal bone, unburnt wood and stone samples were all retrieved through both hand and bulk collection and retained for specialist analysis wherever they were encountered during the excavations.

In the instances where artefacts were uncovered on site they were dealt with in accordance with guidelines issued by the National Museum of Ireland (NMI) and where warranted in consultation with the relevant specialists. All artefacts, ecofacts and paper archive are currently stored in IAC offices, Lismore, Co Waterford and will ultimately be deposited with the National Museum of Ireland.

Radiocarbon dating of the site was carried out by means of AMS (Accelerator Mass Spectrometry) dating of identified and recommended charcoal samples. All calibrated AMS dates in this report are quoted to 2 Sigma.

All excavation and post-excavation works were carried out in consultation and agreement with the Project Archaeologist, the National Monuments Section of the DEHLG and the National Museum of Ireland.
2 EXCAVATION RESULTS

The archaeological activity recorded at Sranagalloon 1 was a Bronze Age burnt mound.

Detailed descriptions of all excavated features and deposits are listed in Appendix 1.

2.1 Phase 1: Natural Drift Geology

The natural geology on site consisted of limestone bedrock and gravel (C2) in the northwestern section of the site changing to a mottled grey sandy till (C10) towards the south and southeast of the site. The exposed subsoil was waterlogged for the entire excavation. A land drain had been cut across this to the south of the site to assist drainage. A fragment of a polished stone axe (E3713:10:1) was recovered from the surface of these gravels. The axehead/adzehead was incomplete and represented the butt portion of the tool. It was made of mudstone (O’Keeffe, Appendix 2.6).

2.2 Phase 2: Bronze Age Activity

Bronze Age activity on site consisted of the remains of a burnt mound (Figures 3–4; Plate 1).

2.2.1 Wood-Lined Trough

<table>
<thead>
<tr>
<th>Context</th>
<th>Fill of</th>
<th>L(m)</th>
<th>W(m)</th>
<th>D(m)</th>
<th>Basic Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>N/A</td>
<td>2.2-4</td>
<td>1.15</td>
<td>0.44</td>
<td>Oval cut, steep, irregular sides</td>
<td>Possible cut</td>
</tr>
<tr>
<td>21</td>
<td>C8</td>
<td>1.5</td>
<td>1.15</td>
<td>0.3</td>
<td>Light grey silty gravel, wood</td>
<td>Compact fill</td>
</tr>
<tr>
<td>11</td>
<td>C8</td>
<td>0.80</td>
<td>0.18</td>
<td>0.05</td>
<td>Upper and main level timbers</td>
<td>Timber lining</td>
</tr>
<tr>
<td>12</td>
<td>C8</td>
<td></td>
<td>0.18</td>
<td>0.05</td>
<td>Lower level timbers</td>
<td>Timber lining</td>
</tr>
</tbody>
</table>

Finds: None

Interpretation

The trough, C8, was oval in plan with a sharp break of slope at the top, steep irregular sides and a flat base (Figures 4–5; Plates 3–4). The southern section of the trough was destroyed by the construction of a modern working open land drain.

The trough appeared to originally have had a wooden lining. This wooden lining was represented by timber planks. Three base timbers, orientated north south and equally spaced, supported the seven remaining timbers, orientated east west, and were positioned on a thin compact light grey silt gravel layer (C21) (they are labelled on Figure 3). The timber samples were all identified as alder (*Alnus glutinosa*) (O’Carroll, Appendix 2.3). Two of the timbers were radially split but there was no evidence for tool marks on any of the timbers.

One AMS date was obtained from the gravel layer C21. A fragment (1.50 g) of hazel (*Corylus avellana*) charcoal was identified (Cobain, Appendix 2.2). This charcoal returned an AMS result of 3106±26 BP (UBA 12759). The 2 Sigma calibrated result for this was 1433–1313 BC (Appendix 2.1) placing the activity in the middle Bronze Age. This sample also contained alder/hazel, birch, oak, ash, traveller’s joy and Maloideae (hawthorn/rowan/crab apple) charcoal fragments indicating mixed deciduous woodland in the surrounding area.
2.2.2 Revetment Stones

<table>
<thead>
<tr>
<th>Context</th>
<th>Fill of</th>
<th>L(m)</th>
<th>W(m)</th>
<th>D(m)</th>
<th>Basic Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>N/A</td>
<td>1.08</td>
<td>0.47</td>
<td>0.18</td>
<td>Limestone slabs lining edge of ‘trough’ cut</td>
<td>Limestone slabs</td>
</tr>
</tbody>
</table>

Finds: None

Interpretation
A large, flat stone orientated east to west, was placed at the northern edge of the trough and smaller, slab-like stones were placed on the eastern and western edges (C22), defining the edge of the feature (Figures 3–4). The larger of the stones measured up to 1.08 m. It is possible that these stones were placed in situ as retaining slabs to prevent the stone debris tumbling back into the trough.

2.2.3 Burnt Spread and Trough Fill

<table>
<thead>
<tr>
<th>Context</th>
<th>Fill of</th>
<th>L(m)</th>
<th>W(m)</th>
<th>D(m)</th>
<th>Basic Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>N/A</td>
<td>3</td>
<td>1</td>
<td>0.15</td>
<td>Light grey brown silty clay</td>
<td>Burnt spread</td>
</tr>
<tr>
<td>5</td>
<td>C8</td>
<td>6</td>
<td>2.4</td>
<td>0.34</td>
<td>Dark grey brown stone and peat layer</td>
<td>Lower layer of spread</td>
</tr>
<tr>
<td>9</td>
<td>C8</td>
<td>1.6</td>
<td>1.5</td>
<td>0.25</td>
<td>Yellow grey silt and stone layer, charcoal</td>
<td>Stony rubble fill of C8</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>9.3</td>
<td>5.95</td>
<td>0.42</td>
<td>Dark brown sandy silt, stones, charcoal</td>
<td>Upper layer of spread</td>
</tr>
</tbody>
</table>

Finds: None

Interpretation
A phase of activity took place after the trough, C8, was decommissioned. A large quantity of small sub-angular stone rubble fill (C9) was dumped into the trough to raise it up to the same level as the surrounding burnt spread material (C5) (Figure 5; Plate 4). At a later phase further burnt mound material covered all earlier activity and the southern section of the trough was destroyed by the construction of a modern working open land drain.

One AMS date was obtained from C5, the basal layer of the burnt spread. A fragment (2.10 g) of alder/hazel (*Alnus glutinosa/Corylus avellana*) charcoal was identified (Cobain, Appendix 2.2). This charcoal returned an AMS result of 2925±38 BP (UBA 12758). The 2 Sigma calibrated result for this was 1260–1012 BC (Appendix 2.1). This is a later date than that recorded from the trough and indicates the later reuse of the mound. Perhaps it was a suitable place within the wetland environment as the original mound may have been drier and more elevated and also provided a ready source of unburnt or partly burnt stone that could be recycled. Alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple), poplar/willow and elm charcoal were also identified from the basal layer of the burnt mound indicating a mixed deciduous woodland in the surrounding area.

A sample of the heat-shattered stone from C5 the lower layer of the spread material was identified as burnt limestone which is not a typical stone associated with burnt mounds (Mandal, Appendix 2.4).

2.3 Phase 3: Modern Drain/Canalised Stream

A modern open drain or canalised stream cut the burnt mound at its southern edge. The open drain extended in an east–west direction through the burnt spread and also cut away the southern limits of a trough. This drain has been depicted on the Ordnance Survey mapping since the first edition and is part of the drainage
catchment of the Moyree River. The area is depicted on the early mapping as an area liable to flooding.

2.3 Phase 4: Topsoil

2.3.1 Topsoil

<table>
<thead>
<tr>
<th>Context</th>
<th>Fill of</th>
<th>L(m)</th>
<th>W(m)</th>
<th>D(m)</th>
<th>Basic Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>Site</td>
<td>Site</td>
<td>0.2–.55</td>
<td>Humic peat topsoil</td>
<td>Topsoil.</td>
</tr>
</tbody>
</table>

Finds:

<table>
<thead>
<tr>
<th>Context</th>
<th>Find Number</th>
<th>Material</th>
<th>Period</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E3713:1:1-4</td>
<td>Clay pipe</td>
<td>Post Medieval</td>
<td>Stem fragment</td>
</tr>
<tr>
<td>1</td>
<td>E3713:1:5</td>
<td>Clay pipe</td>
<td>Post Medieval</td>
<td>Pipe bowl</td>
</tr>
</tbody>
</table>

Interpretation

The topsoil was a dark-brown humic peat and varied in depth from 0.2 m at the north of the site to 0.55 m at the south of the site. Five clay pipe fragments were recovered from the topsoil. All of the archaeological features and the natural subsoil layers were sealed by topsoil.
3 SYNTHESIS AND DISCUSSION

3.1 Landscape Setting
Most of the low-lying areas along the route were associated with poorly drained bog and wet marshland which have developed within glacially formed depressions and seasonal lakes known as turloughs. The higher ground generally comprised well-drained, gently undulating pastureland with some uneven hummocky ridges, formed either of limestone epikarst or glacial features such as drumlins. The two dominant rock types of the region were Carboniferous Limestone, which underlay the entire length of the N18 Gort to Crusheen scheme, and the Devonian Old Red Sandstone, which formed the Slieve Aughty Mountains to the east of the project. The road alignment was predominantly underlain by either limestone and sand derived till deposited during the last glaciation or organic peat which has generally formed since then in the low-lying, poorly drained areas where standing water and slow percolation caused thin layers of peaty soil to accumulate.

The site at Sranagalloon 1, Co. Clare was located at NGR 140187/190023 and was situated at 28 m OD. It was located in a flat pasture field and had been cut by a drain/canalised stream. The field was prone to flooding. The landscape was slightly undulating and was overlooked to the south by a slope. It sloped downwards to the north. A ringfort (CL018-092) is located c. 200 m to the west and an enclosure (CL018-019) is located c. 120 m to the southeast of Sranagalloon 1.

3.2 Bronze Age Archaeological Landscape
Following the test excavation phase of the project it was apparent that most of the archaeological sites identified were located to the south of the scheme in County Clare. This trend appears to have resulted from landscape management in the recent past where the better drained lands to the north have been improved and the fields enlarged which would have had a negative effect on any buried archaeological sites. However, the area to the south, which coincides with crossing the county border, was of more marginal land prone to flooding and in this area the route of the new road tended to follow wet valley floors and steep valley slopes. The landscape encountered in County Clare was much the same as it was depicted on the first edition Ordnance Survey maps (1842).

As with the transition from the Mesolithic to Neolithic periods, the transition to the early Bronze Age period brought with it many changes to society. In County Clare and particularly in the northwest of the county in the Burren where there is a highly visible prehistoric landscape due to the exposed bare rock nature of the terrain the large number of prehistoric sites including c. 80 wedge tombs (Jones 2004, 65) indicates a well organised late Neolithic/early Bronze Age landscape. The transition from the Neolithic to the Bronze Age reflects a continued and somewhat intensified population in north and east Clare. It is during this period that megalithic monuments were abandoned in favour of individual cist or pit burials, either located in isolation or in small cemeteries. Different forms of barrow monuments were also being constructed during the period, as well as ceremonial monuments such as circular henges, standing stones, stone rows and stone circles. A current research project in the Burren has also recorded middle and late Bronze Age ritual funerary deposition in Glencurran Cave, Co. Clare (Dowd 2007).

In recent years Bronze Age habitation sites have come more to the fore as they have been uncovered as part of development-led or infrastructural projects. They are well documented elsewhere but two interesting, recently excavated sites include Bronze Age roundhouses at Tober 1, County Offaly (Walsh 2009) and Barnhill, Dromoland, Co. Clare (Moore Group 2009). An important academic study of the spatial
organisation of Bronze Age society and landscape has been undertaken of the north Munster area and in County Clare this is defined by the work undertaken by Grogan on the Bronze Age trivallate hillfort at Mooghaun (Grogan 2005). This study identified and mapped a Bronze Age landscape dominated by the hillfort which may have influenced a catchment area of up to 450 km² (Grogan 2005, 95). Identified within the area of influence were ceremonial monuments, house sites, burnt mound sites and other more mundane features such as fish traps and trackways in the Fergus estuary (O’Sullivan and Dillon 2005). The Mooghaun study area is outside the sphere of influence of sites identified on the Gort to Crusheen scheme but indicates nonetheless that a similar societal organisation of the landscape may have existed for them too. A hoard of gold objects discovered at Mooghaun during the construction of the Limerick – Ennis railway in 1854 is one of the largest single discoveries of Bronze Age gold in Europe (Grogan 2005, 70). Another significant gold find from the north of the county was the Gleninsheen gorget, a large collar of hammered gold discovered by a farmer in 1932 (Jones 2004, 74).

The most widespread domestic sites from the Bronze Age are burnt mounds (also known as fulacht fiadh). They survive as low mounds of charcoal rich-soil mixed with heat-shattered stones. They are usually horseshoe shaped, located in low-lying areas near a water source and are often found in clusters. While it is generally thought that they were probably used as cooking places (Ó Drisceóil 1988), finds from excavated examples where there is a noteworthy absence of animal bone does not easily support this theory. Lucas (1965) suggested that burnt mounds might have been used for processes such as bulk washing, dying and leather working while Barfield and Hodder (1987) have suggested that such sites were covered by light structures and used as sweat houses. Radiocarbon dates for this monument type have generally placed them in the Bronze Age (Brindley et al. 1990, 55) though evidence from early Irish texts (Ó Drisceóil 1988) suggest use of this type of site up until the 16th century AD.

Burnt mounds make up a significant number of the Recorded Monuments within the immediate vicinity of the Gort to Crusheen road scheme and following examination of a one kilometre wide corridor, using the road as the centreline, of the scheme, these classic elements of the Bronze Age landscape became apparent. Within this defined corridor there were no recorded burnt mounds in south County Galway, whereas north County Clare was rich in the monument-type: RMP sites CL018-069, CL018-071, CL018-072, CL018-077, CL018-084, CL018-082, CL018-083, CL018-086, CL026-143, CL026-130, CL026-131, CL026-136, CL026-138, CL026-137, CL026-134, CL026-135, 02E1284 partly excavated as part of the Bord Gáis Éireann’s pipeline to the west at Bearnafunshin (Dennehy 2002a), 02E0342 excavated as part of the Bord Gáis Éireann’s pipeline to the west at Bearnafunshin (Halpin 2002), CL026-149, CL026-150, CL026-151, CL026-156, CL026-157, CL026-158, CL026-165, CL026-164, and Site AR25 Carrowdotia (Taylor 2006a). There appeared to be a tendency in the sites identified for clustering, often within 100 m or less of each other.

Single upright standing stones are a common feature of the Irish landscape and, though they may date to different periods and serve different functions, excavation has shown that some may mark prehistoric burials, while some may signify a route-way, a boundary, or serve a commemorative role. Generally speaking, it is likely that a large number date to the Bronze Age. The orientation of a stone may have had significance, with their long axes aligned to another stone or toward a cairn on a mountain top, although the latter is difficult to prove. A standing stone (RMP CL026-035) has been identified c. 150 m southeast of the southern end of the route.
Ring barrows consist of a low, usually circular mound or level area enclosed by a fosse and external bank, the diameter of the earthwork usually ranging between 4 m and 12 m and rarely exceeding 1 m in height or depth. Excavation has demonstrated that they usually sealed a burial deposit, often a cremation. Such forms of burial have a long tradition and individual examples have been assigned to the Neolithic, Bronze and Iron Ages. A ring barrow (Dennehy 2002b) was identified during monitoring of Bord Gáis Éireann’s pipeline at Cloonagowan, Co. Clare. The archaeological remains represented a cremation pit with a ring ditch. Pits, stakeholes and a slot trench were identified within the ring ditch, with some pits indicating a probable domestic function. A second cremation pit was identified c. 75 m to the northeast, with an isolated posthole, which may have acted as a marker for the cremation pits, located further to the northeast. A single thumbnail scraper was recovered from the site, enabling the rough dating to the late Neolithic/early Bronze Age period (Dennehy 2002c). A single possibly Bronze Age cremation pit and industrial pits were identified during the monitoring of Bord Gáis Éireann’s pipeline in Gortaficka (Dennehy and Sutton 2002). A wedge tomb (CL026-015) is located less than 500 m northeast of a concentration of burnt mounds and spreads which surround a peat bog, and were excavated as part of the N18 Gort to Crusheen road scheme, in Caheraphuca townland. The wedge tomb is also likely to date to the late Neolithic or early Bronze Age.

Our appreciation of the wider Bronze Age landscape in Counties Clare and Galway is continuously being expanded as more sites are being uncovered during research, development-led and infrastructural projects such as the N18 road scheme. Excavations connected with construction of the N18 to the north (Gort to Oranmore) which is entirely within County Galway has also recently produced evidence for the Bronze Age with eight burnt mound sites identified; one at Ballyglass West, a cluster in Caherweelder townland and further examples in Moyveela and Coldwood (Eachtra 2009).

Excavations undertaken by TVAS (Ireland) Ltd in 2003 in advance of construction of the N18 Ennis Bypass and N85 Western Relief Road, which terminated at the southern end of the N18 Gort to Crusheen road scheme revealed similar archaeological sites. This area was generally better drained and the variety of Bronze Age sites encountered during that project reflects the change in terrain. The marginal lands and areas closest to wetlands, rivers and streams produced evidence for burnt mounds such as the four burnt mound sites identified at Clare Abbey (Hull 2006a and b, Taylor 2006c and d) close to the Ardsollus river (a tributary of the Fergus). Burnt mound sites were also excavated at Killow (Taylor 2006b), Cahircalla More (Taylor 2006e) and Carrowdotia (Taylor 2006a) just to the very south of the Gort to Crusheen project. Apart from the burnt mound sites a number of funerary sites were also identified on the N18 Ennis Bypass and N85 Western Relief Road. Two cremation cemetery sites were identified in Manusmore townland (Hull 2006c and 2006d) both were located on slightly elevated free draining gravel ridges. A third site with cremation pits was identified at Killow (Taylor 2006b) in close proximity to a burnt mound; it was located on a low but well-drained gravel drumlin.

The landscape of County Clare is rich in sites dating to the Bronze Age, indicating that the area was widely inhabited during that period. Burnt mounds are the most frequent site of Bronze Age date encountered in this area of Clare, with twenty seven identified within the immediate area of the road scheme. There are no burnt mounds recorded within the tight constraints of the study area for Co. Galway but there are examples in the wider surrounding area and they were also located in the excavations on the N18 contract further to the north. The archaeological evidence to date indicates that the study area and indeed its wider landscape was inhabited throughout the entire Bronze Age period.
Bronze Age Sranagalloon 1

The site at Sranagalloon 1 consisted of a spread of heat-shattered stone which sealed one trough. It was located in a flat pasture field and had been cut by a drain/canalised stream. The field was prone to flooding. This site returned a 2 sigma date range of between 1433–1313 BC (3106±26 BP: UBA 12759) and 1260–1012 BC (2925±38 BP: UBA 12758) (Appendix 2.1).

Similar parallels in terms of morphology and dating to the Bronze Age were identified and excavated across the project. The sites excavated across the scheme were generally identified as simple spreads or mounds of burnt and heat-shattered stone, while some of these like the one at Drumminacloghaun 1 (McNamara 2009a) had evidence for a simple earth-cut trough, other sites such as those at Gortavoher 1 (Delaney 2009b) and Caheraphuca 10 (Bayley 2009c) were represented simply by spreads of heat shattered stone.

Isolated burnt mound sites identified along the project were Rathwilladoon 4 (Lyne 2009b), Drumminacloghaun 1 (McNamara 2009a) and Clooneen 1 (Bayley 2009a). As the route travelled further south it tended to follow marginal wetland and stream valleys and the burnt mounds appeared to become more clustered. This clustering of sites was identified at Curtaun 1 and 2 (Delaney 2009a), Gortavoher/Monreaigh (Delaney 2009b and McNamara 2009b), Derrygarriff (Nunan 2009a and 2009b), Sranagalloon/Gortaficka (Nunan 2009c and 2009d), Caheraphuca (Bayley 2009b and 2009c) and Ballyline (McNamara 2009c). A similar pattern of clustered burnt mounds to the south in county Clare and a paucity of examples of burnt mounds in county Galway was also encountered during the construction of Bord Gáis Éireann pipeline (Grogan et al. 2007). The AMS dating indicates however that the sites were not necessarily contemporary but rather spanned the entire Bronze Age period and extended into the Iron Age (with one example at Derrygarriff 1 possibly indicating a medieval date) illustrating how the process of this pyrolithic technology remained the same across thousands of years.

More elaborate examples of troughs and pits from across the project (though serving the same function) displayed evidence for timber lining through the identification of stakeholes for upright supports at Curtaun (Delaney 2009a), Caheraphuca 1 (Bayley 2009b) and Gortaficka 1 and 2 (Nunan 2009d) and in some cases the actual remains of timber lining as at Clooneen 1 (Bayley 2009a), Caheraphuca 4 (Bayley 2009c) and Sranagalloon 1 and Sranagalloon 3 (Nunan 2009c). Although the primary function of these sites was to heat water through the use of hot stones the actual purpose remains unknown. The sites at Caheraphuca 1 and Gortaficka 2 both displayed evidence for numerous troughs, drains, hearths and possibly preparation areas with stake lined pits suggesting that they may have been used for some more formal industrial function than the other sites.

Sranagalloon 1 was located approximately 550 m to the south of the burnt mound at Derrygarriff 3 (Nunan 2009b) and was located approximately 750 m north of the burnt mound at Sranagalloon 3. Another burnt mound was also located approximately 900 m to the northwest in Sranagalloon (CL018–67).

A review of the RMP records and the sites excavated as part of the N18 Gort to Crusheen road scheme indicate that the number of known or suspected burnt mounds increases towards the south of the project. In relation to Sranagalloon 1 there is also a cluster of burnt mound sites around the lakes on the eastern slopes of Mullagh More in the Burren (approximately 7 km to the northwest). A cluster of megalithic tombs and standing stones are located on the northern slopes of Maghera.
hill approximately 11 km to the east northeast. A wedge tomb and two unclassified megalithic tombs are located approximately 2 km to the east southeast in Knockmael East (CL016–026, CL016–027) and a wedge tomb is located in Caheraphuca (CL26–015) approximately 2.5 km to the south. Clusters of burnt mounds were excavated on the project to the north in Monreagh and Derrygarriff and to the south at Caheraphuca and Ballyline townlands.

3.3 Typology of Burnt Mounds
The wooden-lined trough and surrounding spread of heat-shattered stone and charcoal-rich material indicated that Sranagalloon 1 represents a burnt mound type site. Burnt mound sites (also commonly referred to as *fulachta fiadh*) are one of the most common field monuments found in the Irish landscape. The last published survey (Power et al. 1997), carried out over a decade ago, recorded over 7,000 burnt mound sites and in excess of 1,000 sites have been excavated in recent years through development led archaeological investigations. In spite of this no clear understanding of the precise function of these sites has been forthcoming.

Burnt mound sites are typically located in areas where there is a readily available water source, often in proximity to a river or stream or in places with a high water table. In the field burnt mounds may be identified as charcoal-rich mounds or spreads of heat-shattered stones, however, in many cases the sites have been disturbed by later agricultural activity and are no longer visible on the field surface. Nevertheless even disturbed spreads of burnt mound material often preserves the underlying associated features, such as troughs, pits and gullies, intact.

Ó Néill (2003–2004, 82) has aptly identified these sites as the apparatus and by-product of pyrolithic technology. This technology involved the heating or boiling of water by placing fire-heated stones into troughs of water. Small shallow round-bottomed pits, generally referred to as pot boiler pits or roasting pits, are often associated with burnt mound sites. The purpose of these pits remains unclear. Occasionally large pits are also identified and may have acted as wells or cisterns. Linear gullies may extend across the site, often linked to troughs and pits, and demonstrate a concern with onsite water management. Post and stakeholes are often found on burnt mound sites and these may represent the remains of small structures or wind breakers.

Burnt mound sites are principally Bronze Age monuments and reach their pinnacle of use in the middle/late Bronze Age (Brindley et al. 1989–90; Corlett 1997). Earlier sites, such as Enniscoffey Co. Westmeath (Grogan et al. 2007, 96), have been dated to the Neolithic and later sites, such as Peter Street, Co. Waterford (Walsh 1990, 47), have been dated to the medieval period. Thus although burnt mound sites generally form a components of the Bronze Age landscape, the use of pyrolithic technology has a long history in Ireland.

Although there is a general consensus that burnt mound sites are the result of pyrolithic technology for the heating or boiling of water, the precise function of these sites has, to date, not been agreed upon. Several theories have been proposed but no single theory has received unanimous support. The most enduring theory is that burnt mounds sites were used as cooking sites. O’Kelly (1954) and Lawless (1990) have demonstrated how joints of meat could be efficiently cooked in troughs of boiling water. The use of burnt mound sites for bathing or as saunas has been suggested as an alternative function (Lucas 1965; Barfield and Hodder 1987; Ó Drisceóil 1988). This proposal is largely influenced by references in the early Irish literature to sites of a similar character and is very difficult to prove, or disprove. Others, such as Jeffrey (1991), argue that they may have been centres of textile
production for the fulling or dyeing of cloth. More recent demonstrations by Quinn
and Moore (2007) have shown that troughs could have been used for brewing,
however, this theory has been criticised by specialist environmentalists due to the
absence of cereal remains from most burnt mound sites (McClatchie et al. 2007).

3.4 Discussion
The site comprised an early Bronze Age period timber-lined trough that was sealed
by a flattened burnt mound.

3.4.1 Phase 1: Natural Drift Geology
This phase represents the natural subsoil, which was cut or sealed by all subsequent
archaeological features. For the purposes of recording on-site this phase of activity
was allocated the context number C2.

The natural geology on site consisted of limestone bedrock and gravel in the
northwestern section of the site changing to a mottled grey sandy till towards the
south and southeast of the site. The exposed subsoil was waterlogged for the entire
evacuation. A land drain had been cut across this to the south of the site to assist
canalise an existing stream. A fragment of a polished stone axehead (E3713:10:1)
was recovered from the surface of these gravels. The axehead/adzehead was
incomplete and represented the upper portion of the tool. It was made of mudstone
(O’Keeffe, Appendix 2.6). Similar mudstone axes have been recorded from across
the scheme and all appear to be unrelated to the sites that were excavated.
Mudstone axes were identified at Caheraphuca 1 (Bayley 2009b), Caheraphuca 8
(Bayley 2009c) and shale axes were identified at Caheraphuca 1 and Monreagh 1
and 2 (McNamara 2009b). Apart from Rathwilladoon 2 and 3 (Lyne 2009a), where
the axe fragments were found in contexts associated with pottery, the rest of the
axehead finds were rare isolated finds.

3.4.2 Phase 2: Bronze Age Activity
Bronze Age activity on site consisted of the remains of a burnt mound with a trough
(Figures 3–4; Plate 1). The trough was oval in plan with a sharp break of slope at the
top, steep irregular sides and a flat base (Figures 4–5; Plates 3–4). The southern
section of the trough was destroyed by the construction of a land drain/canalised
stream.

The trough originally had a wooden lining. This wooden lining was represented by
timber planks. Three base timbers, orientated north/south and equally spaced,
supported the seven remaining timbers, orientated east/west, and were positioned on
a thin compact light grey silt gravel layer. The timber samples were all identified as
alder (Alnus glutinosa) O Carroll, Appendix 2.3). Two of the timbers were radially split
but there was no evidence for tool marks on any of the timbers. The timbers were in
such poor preservation that very little information could be obtained from them
generally. As alder is a widespread native tree and grows in wet habitats it is
assumed that the timber for the trough was collected close by (ibid.).

One AMS date was obtained from the gravel layer C21. A fragment (1.50 g) of hazel
(Corylus avellana) charcoal was identified (Cobain, Appendix 2.2). This charcoal
returned an AMS result of 3106±26 BP (UBA 12759). The 2 Sigma calibrated result
for this was 1433–1313 BC (Appendix 2.1) placing the activity in the middle Bronze
Age.

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Context / sample</th>
<th>Sample material</th>
<th>Years BP</th>
<th>1 sigma</th>
<th>2 sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA 12759</td>
<td>C11 / S21</td>
<td>Charcoal Hazel</td>
<td>3106±26</td>
<td>Cal 1420–1322 BC</td>
<td>Cal 1433–1313 BC</td>
</tr>
</tbody>
</table>
A large, flat stone orientated east west was placed at the northern edge of the trough and smaller, slab-like stones were placed on the eastern and western edges, defining the edge of the feature (Figures 3–4). The larger of the stones measured up to 1.08 m. It is possible that these stones were placed *in situ* as retaining slabs to prevent the stone debris tumbling back into the trough.

A phase of activity took place after the trough, was decommissioned. A large quantity of small sub-angular stone rubble fill (C9) was dumped into the trough to raise it up to the same level as the surrounding burnt spread material (C5) (Figure 5; Plate 4). One AMS date was obtained from C5, the basal layer of the burnt spread. A fragment (2.10 g) of alder/hazel (*Alnus glutinosa/Corylus avellana*) charcoal was identified (Cobain, Appendix 2.2). This charcoal returned an AMS result of 2925±38 BP (UBA 12758). The 2 Sigma calibrated result for this was 1260–1012 BC (Appendix 2.1). This is a later date than that recorded from the trough and indicates the later reuse. Perhaps it was a suitable place within the wetland environment as the original mound may have been drier and more elevated.

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Context / sample</th>
<th>Sample material</th>
<th>Years BP</th>
<th>1 sigma</th>
<th>2 sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA 12758</td>
<td>C5 / S2</td>
<td>Charcoal/Alder/Hazel</td>
<td>2925±38</td>
<td>Cal 1207–1052 BC</td>
<td>Cal 1260–1012 BC</td>
</tr>
</tbody>
</table>

A sample of the heat-shattered stone from C5 the lower layer of the spread material was identified as burnt limestone which is not a typical stone associated with burnt mounds (Mandal, Appendix 2.4). Limestone is part of the underlying geology at Sranagalloon and was visible on site as bedrock and would have been widely available in the environs of the site. It is not however, an ideal stone for use in a burnt mound, as its ability to absorb heat is not as good as sandstone for example (ibid.). Therefore it is likely that it was chosen because of its widespread availability on site; or alternatively it was required for a specific function. If limestone is burnt at a high temperature it can fracture and reduce to quick lime. This is a skin irritant and can cause discomfort in the upper respiratory tract and major discomfort if ingested. If this is then added to water it produces calcium hydroxide (Ca (OH) 2); which produces similar symptoms (Irishlime.com). This may suggest that this burnt mound site was not used for cooking or preparing food.

Calcium hydroxide has a number of known uses, one of which is in the preparation of hides for tanning. Once a hide or skin has been soaked in a solution of lime rich water it can be stretched over a frame and dehaired without fear of it decomposing. Considering the lack of evidence for industry or food preparation at this site it is reasonable to offer tanning as a possible function of the site.

The closest excavated burnt mounds to Sranagalloon 1 are Sranagalloon 3 to the south which has returned a date of 1494–1324 BC and Derrygarriff 3 to the north which returned a date of 1006–850 BC. These two sites date either side of the activity identified at Sranagalloon 1 and reflect the continuity of this form of site in the immediate landscape during the middle Bronze Age.

3.4.3 Phase 3: Modern Drain/Canalised Stream

A modern open drain or canalised stream cut the burnt mound at its southern edge. The open drain extended in an east–west direction through the burnt spread and also cut away the southern limits of a trough. This drain has been depicted on the OS mapping since the first edition and is part of the drainage catchment of the Moyree River. The area is depicted on the early mapping as an area liable to flooding.
3.4.4 Phase 4: Topsoil
The topsoil was a dark-brown humic peat and varied in depth from 0.2 m at the north of the site to 0.55 m at the south of the site. Five clay pipe fragments were recovered from the topsoil. All of the archaeological features and the natural subsoil layers were sealed by topsoil.
4 CONCLUSIONS

Sranagalloon 1 was located on a flat pasture field that was prone to flooding. The site was truncated on the south by a canalised stream. The site comprised of a wood-lined trough that had been sealed by a burnt mound. The wood from the trough has been identified as split planks of alder and was probably gathered close by. Charcoal identified from the site indicates mixed deciduous woodland in the surrounding area. Hazel charcoal from the trough dated to 1433–1313 BC (2 Sigma calibration). The site appears to have been abandoned only to be reused again in the middle Bronze Age period c. 1260–1012 BC. The heat shattered stone has been identified as limestone and in the light of any other evidence to suggest a use may indicate that the trough was used for tanning or a similar industrial function. A mudstone polished stone axe was recovered from the area of the excavation but is not likely to have been associated with the above activity.
5 BIBLIOGRAPHY

5.1 References
Babtie Pettit Ltd 2006 Cultural Heritage Section of N18 Gort to Crusheen Scheme Environmental Impact Statement undertaken on behalf of Galway County Council

Bartlett, ADH 2004 N18 Gort to Crusheen Road Scheme: Report on Archaeogeophysical Survey of Proposed Route. RSKENSR, Helsby

Barfield, L & Hodder, M 1987 ‘Burnt mounds as saunas and the prehistory of bathing’. Antiquity 64, 370 – 379

Corlett, C 1997 A fulacht fiadh site at Moynagh Lough, County Meath, Ríocht na Midhe 9 (3), 46–49

Dennehy, E 2002b Cloonagowan, Co Clare. In Bennett, I Excavations 2002. Wordwell, Bray

Dennehy, E 2002c Cloonagowan, Co Clare. In Bennett, I Excavations 2002. Wordwell, Bray

Dowd, M 2007 Living and dying in Glencurran Cave. Archaeology Ireland 21 (1), 36−39

Grogan, E O’Donnell, L and Johnston, P 2007 The Bronze Age Landscapes of the Pipeline to the West. Bray, Margaret Gowen and Co. Ltd and Wordwell
Grogan, E 2005 The North Munster Project, Vol 1, The later prehistoric landscape of south-east Clare, *Discovery Programme Monographs* 6, Wordwell, Bray

Halpin, B 2002 Bearnafunshin, Co Clare. In Bennett, I *Excavations 2002*: Wordwell, Bray

Hull, G 2006c Site AR100, Manusmore, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Hull, G 2006d Site AR102, Manusmore, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Hull, G 2006a Site AR124, Clare Abbey, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Hull, G 2006b Site AR125, Clare Abbey, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Lawless, C 1990 A *fulacht fiadh* Bronze Age cooking experiment at Turlough, Castlebar, *Cathair na Mart* 10, 1-10

Lucas, A T 1965 Washing and bathing in ancient Ireland, *JRSAI* 96, 65–114

O’ Kelly, M J 1954 Excavations and experiments in ancient Irish cooking-places, *JRSAI, 84*, 105–155

O’Sullivan, A and Dillon, M 2005 *Intertidal archaeological survey of Bronze Age structures and medieval fishtraps on the Fergus estuary, Co. Clare*. UCD School of Archaeology, Dublin

Quinn, B and Moore, D 2007 Ale, brewing and *fulachta fiadh, Archaeology Ireland 21* (3), 8–10

Taylor, K 2006a Site AR25, Carrowdotia, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Taylor, K 2006b Site AR104, Killow, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Taylor, K 2006c Site AR121, Clare Abbey, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Taylor, K 2006d Site AR122, Clare Abbey, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Taylor, K 2006e Site AR127, Cahircalla More, Co Clare. Final Archaeological Excavation Report for Clare County Council. TVAS Ireland Ltd

Walsh, F 2009 Site A016/051; E2677: Tober 1, Tober, County Offaly. Unpublished report prepared by Irish Archaeological Consultancy Ltd

5.2 Other Sources

Record of Monuments and Places (RMP), The Department of the Environment, Heritage and Local Government, 7 Ely Place Upper, Dublin 2

Topographical Files of the National Museum of Ireland, Kildare Street, Dublin 2
Cartographic References
Ordnance Survey, Map Editions 1842, 1899, 1915

Electronic References
http://eachtra.ie/index.php/journal/n18 oranmore-gort/

http://www.irishlime.com/pfds/Hydrated%20Lime%20MSDS.pdf

PLATES

Plate 1 Pre-exavation view of the site, looking south

Plate 2 The trough C8 under excavation, looking east
Plate 3 The trough C8, mid-excavation, looking north

Plate 4 Post-excavation view of the site and trough C8, looking south
APPENDIX 1 CATALOGUE OF PRIMARY DATA

Appendix 1.1 Context Register

<table>
<thead>
<tr>
<th>Context</th>
<th>Fill of</th>
<th>L(m)</th>
<th>W(m)</th>
<th>D(m)</th>
<th>Basic Description</th>
<th>Interpretation</th>
<th>Description</th>
<th>Finds</th>
<th>Context Above</th>
<th>Context Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>Topsoil</td>
<td>Humic peat topsoil</td>
<td>5 clay pipe frags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 =10</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>Natural Limestone and gravel</td>
<td>Limestone bedrock and grey gravels</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>Natural Peat horizon</td>
<td>Firm mid to dark grey sandy silt. Inclusions of 80% stones (natural gravel). Occasional large pieces of root.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>9.3</td>
<td>5.95</td>
<td>0.42</td>
<td>Dark brown sandy silt, stones, charcoal.</td>
<td>Upper layer of burnt spread.</td>
<td>Loose dark brown sandy silt. 55% stone inclusions. Frequent charcoal flecks.</td>
<td>N/A</td>
<td>C1</td>
<td>C9</td>
</tr>
<tr>
<td>5</td>
<td>C8</td>
<td>6</td>
<td>2.4</td>
<td>0.34</td>
<td>Dark grey brown stone and peat layer.</td>
<td>Lower layer of burnt spread.</td>
<td>Moderate compaction dark grey brown peaty silt. 65% stone inclusions. Frequent charcoal flecks and small pieces of charcoal.</td>
<td>N/A</td>
<td>C9</td>
<td>C11-20</td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>3</td>
<td>1</td>
<td>0.15</td>
<td>Light grey brown silty clay.</td>
<td>Possible early stage of burnt spread.</td>
<td>Moderate compaction light grey brown silty clay. 70% small stones.</td>
<td>N/A</td>
<td>C5</td>
<td>C3</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>2.2-4</td>
<td>1.15</td>
<td>0.44</td>
<td>Sub oval cut, steep, irregular sides.</td>
<td>Trough</td>
<td>East – west orientated sub oval cut. No clear corners. Sharp break of slope at top to E and W. Steep, irregular sloping sides. Gradual break of slope at base. Flat base.</td>
<td>N/A</td>
<td>C21</td>
<td>C2</td>
</tr>
<tr>
<td>8</td>
<td>N/A</td>
<td>2</td>
<td>1.5</td>
<td>0.25</td>
<td>Yellow grey silt and stone layer, charcoal.</td>
<td>Stony rubble fill of trough</td>
<td>Loose yellow grey silt. Inclusions of 70% small and medium stone. Occasional charcoal flecks.</td>
<td>N/A</td>
<td>C4</td>
<td>C5</td>
</tr>
<tr>
<td>9</td>
<td>C8</td>
<td>1.6</td>
<td>1.5</td>
<td>0.25</td>
<td>Yellow grey silt and stone layer, charcoal.</td>
<td>Stony rubble fill of trough</td>
<td>Loose yellow grey silt. Inclusions of 70% small and medium stone. Occasional charcoal flecks.</td>
<td>N/A</td>
<td>C4</td>
<td>C5</td>
</tr>
<tr>
<td>10=2</td>
<td>N/A</td>
<td>8.7</td>
<td>1.5</td>
<td>0.1</td>
<td>Mid dark grey sandy silt, stones,</td>
<td>Gravelly natural deposit</td>
<td>Firm mid to dark grey sandy silt. Inclusions of 80% stones (natural gravel). Occasional large pieces of root.</td>
<td>1</td>
<td>Stone axe butt</td>
<td>C1</td>
</tr>
<tr>
<td>11</td>
<td>C8</td>
<td></td>
<td></td>
<td></td>
<td>Trough timbers</td>
<td>Possible lining of trough C8 (see timber sheets)</td>
<td>6 upper and main level timbers T# 1 - 6</td>
<td>N/A</td>
<td>C5</td>
<td>C21</td>
</tr>
<tr>
<td>12</td>
<td>C8</td>
<td></td>
<td></td>
<td></td>
<td>Trough timbers</td>
<td>Possible lining of trough C8 (see timber sheets)</td>
<td>4 lower level timbers T # 7 - 10</td>
<td>N/A</td>
<td>C5</td>
<td>C21</td>
</tr>
<tr>
<td>13-20</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>Not used</td>
<td>Not used</td>
<td>Not used</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>C8</td>
<td>1.5</td>
<td>1.15</td>
<td>0.3</td>
<td>Light grey silty gravel, wood.</td>
<td>Compact fill</td>
<td>Very firm light grey silty gravel. Moderate inclusions of small pieces of wood.</td>
<td>C11-20</td>
<td>C8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>N/A</td>
<td>1.08</td>
<td>0.47</td>
<td>0.18</td>
<td>Large limestone lining the edge of ‘trough’ cut</td>
<td>Lime stone slabs</td>
<td>Retaining slabs to prevent the stone debris tumbling back into the trough</td>
<td>N/A</td>
<td>C5</td>
<td>C2</td>
</tr>
</tbody>
</table>
Appendix 1.2 Catalogue of Artefacts

<table>
<thead>
<tr>
<th>Registration Number</th>
<th>Context</th>
<th>Item No.</th>
<th>Simple Name</th>
<th>Full Name</th>
<th>Material</th>
<th>No. of Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3713:1:1</td>
<td>1</td>
<td>1</td>
<td>Clay pipe</td>
<td>Clay pipe</td>
<td>Ceramic</td>
<td>1</td>
<td>Stem fragment</td>
</tr>
<tr>
<td>E3713:1:2</td>
<td>1</td>
<td>2</td>
<td>Clay pipe</td>
<td>Clay pipe</td>
<td>Ceramic</td>
<td>1</td>
<td>Stem fragment</td>
</tr>
<tr>
<td>E3713:1:3</td>
<td>1</td>
<td>3</td>
<td>Clay pipe</td>
<td>Clay pipe</td>
<td>Ceramic</td>
<td>1</td>
<td>Stem fragment</td>
</tr>
<tr>
<td>E3713:1:4</td>
<td>1</td>
<td>4</td>
<td>Clay pipe</td>
<td>Clay pipe</td>
<td>Ceramic</td>
<td>1</td>
<td>Stem fragment</td>
</tr>
<tr>
<td>E3713:1:5</td>
<td>1</td>
<td>5</td>
<td>Clay pipe</td>
<td>Clay pipe</td>
<td>Ceramic</td>
<td>1</td>
<td>Pipe bowl</td>
</tr>
<tr>
<td>E3713:10:1</td>
<td>10</td>
<td>1</td>
<td>Stone axehead/adze</td>
<td>Stone axehead/adze</td>
<td>Mudstone</td>
<td>1</td>
<td>Broken stone axe/adze</td>
</tr>
</tbody>
</table>
Appendix 1.3 Catalogue of Ecofacts

These results relate to the processed samples taken at the excavation. A full list of these samples was supplied with the preliminary reports lodged with Galway NRDO. A total of five bulk soil samples were taken during the course of excavation at this site. All of these were processed by means of flotation and sieving through a 250/300µm mesh.

1.3.1 Animal bone/burnt bone
Two samples of animal bone were hand retrieved from site. These were not analysed as one was from topsoil and the other was not diagnostic.

<table>
<thead>
<tr>
<th>Context number</th>
<th>Sample number</th>
<th>Feature</th>
<th>Sample weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>Burnt Spread</td>
<td>0.8g</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Topsoil</td>
<td></td>
</tr>
</tbody>
</table>

1.3.2 Charcoal
Two charcoal samples were recovered following flotation.

<table>
<thead>
<tr>
<th>Context number</th>
<th>Sample number</th>
<th>Feature</th>
<th>Sample weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Base of burnt spread</td>
<td>18.0g</td>
</tr>
<tr>
<td>11,12,9</td>
<td>22</td>
<td>Trough</td>
<td>5.3g</td>
</tr>
</tbody>
</table>

1.3.3 Charred seeds
One sample produced charred seeds. The seeds were too fragmented to analyse.

<table>
<thead>
<tr>
<th>Context number</th>
<th>Sample number</th>
<th>Feature</th>
<th>Sample weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Base of burnt spread</td>
<td><0.1g</td>
</tr>
</tbody>
</table>

1.3.4 Timber samples
Nine timber samples were recovered from the trough.

<table>
<thead>
<tr>
<th>Context number</th>
<th>Sample number</th>
<th>Feature</th>
<th>Timber</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>9</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>Trough</td>
<td>Alder</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>Trough</td>
<td>Alder</td>
</tr>
</tbody>
</table>

1.3.5 Shell
Two samples of shell were hand retrieved from site but as they were so fragmented no analysis was undertaken.
Appendix 1.4 Archive Checklist

<table>
<thead>
<tr>
<th>Field Records</th>
<th>Items (quantity)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site drawings (plans)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Site sections, profiles, elevations</td>
<td>4</td>
<td>Two sheets</td>
</tr>
<tr>
<td>Other plans, sketches, etc.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Timber drawings</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stone structural drawings</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Site diary/note books</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Site registers (folders)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Survey/levels data (origin information)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Context sheets</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Wood Sheets</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Skeleton Sheets</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Worked stone sheets</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Digital photographs</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Photographs (print)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Photographs (slide)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Finds and Environ. Archive

<table>
<thead>
<tr>
<th>Category</th>
<th>Items (quantity)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint/chert</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stone artefacts</td>
<td>1</td>
<td>Polished stone axe butt</td>
</tr>
<tr>
<td>Pottery (specify periods/typology)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ceramic Building Material (specify types eg daub, tile)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Metal artefacts (specify types - bronze, iron)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other find types or special finds (specify)</td>
<td>5</td>
<td>Clay pipe fragments</td>
</tr>
<tr>
<td>Timber and trough material</td>
<td>12</td>
<td>Trough timbers</td>
</tr>
<tr>
<td>Human bone (specify type eg cremated, skeleton, disarticulated)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Animal bone</td>
<td>2 pieces</td>
<td>2 samples (1 from topsoil)</td>
</tr>
<tr>
<td>Metallurgical waste</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Enviro bulk soil (specify no. of samples)</td>
<td></td>
<td>Processed</td>
</tr>
<tr>
<td>Enviro (specify number of samples and number of tins per sample)</td>
<td>2</td>
<td>Shell fragments</td>
</tr>
</tbody>
</table>

Security copy of archive | Yes | IAC Digital |
APPENDIX 2 SPECIALIST REPORTS

Appendix 2.1 Radiocarbon Dating – QUB Laboratory
Appendix 2.2 Charcoal Remains – Sarah Cobain
Appendix 2.3 Charcoal and Wood ID – Ellen O’Carroll
Appendix 2.4 Petrological Analysis – Stephen Mandal
Appendix 2.5 Lithics – Dr Farina Stemke
Appendix 2.6 Stone Axehead – Irish Stone Axe Project
Appendix 2.7 Catalogue of Clay Pipes – Maeve Tobin
RADIOCARBON DATING RESULTS
SRANAGALLOON 1, CO. CLARE, E3713

CHRONO LABORATORY, QUEENS UNIVERSITY BELFAST
Radiocarbon Date Certificate

Laboratory Identification: UBA-12758
Date of Measurement: 2005-10-27
Site: E3713 Sranagalloon 1
Sample ID: C552
Material Dated: charcoal
Pretreatment: AAA
Submitted by: IAC

14C Date: 2925±38
AMS δ13C: -29.2

Information about radiocarbon calibration

The calibrated range impinges on end of calibration data set

Comments:
* This standard deviation (error) includes a lab error multiplier.
** 1 sigma = square root of (sample std. dev.$^2 +$ curve std. dev.2)
** 2 sigma = 2 x square root of (sample std. dev.$^2 +$ curve std. dev.2)
where 2 = quantity squared.
[] = calibrated range impinges on end of calibration data set 0*_ represents a "negative" age BP 1950* or 1960* denote influence of nuclear testing C-14

NOTE: Cal ages and ranges are rounded to the nearest year which may be too precise in many instances. Users are advised to round results to the nearest 10 yr for samples with standard deviation in the radiocarbon age greater than 50 yr.
Radiocarbon Date Certificate

Laboratory Identification: UBA-12759
Date of Measurement: 2009-10-24
Site: E3713 Sranagalloon 1
Sample ID: C11-20S21
Material Dated: charcoal
Pretreatment: AAA
Submitted by: IAC

14C Date: 3106±26
AMS 13C: -29.4

Information about radiocarbon calibration

Copyright 1996-2005 M Stuiver and PJ Reimer
*To be used in conjunction with:
Annotated results (text) - Export file - c14res.csv

C11-20S21
UBA-12759
Radiocarbon Age BP: 3106 +/- 26
Calibration data set: intercal4.14c # Reimer et al. 2004

% area enclosed cal AD age ranges relative area under probability distribution
68.3 (1 sigma) cal BC 1420-1375 0.780
1340-1322 0.202
1300-1288 1.000
95.4 (2 sigma) cal BC 1430-1333

References for calibration datasets:
PJ Reimer, MG Baillie, E Bard, M Bayliss, JW Beck, C Bertrand, PG Blackwell,
CB Buck, G Burr, KB Cutler, FE Damon, AL Edwards, RG Fairbanks, M Friedrich,
TF Guilderson, KA Hughen, B Kromer, FG McCormac, S Manning, C Bronk Ramsey,
RM Reimer, S Reimer, JR Southon, M Stuiver, S Talamo, FM Taylor,

Comments:
* This standard deviation (error) includes a lab error multiplier.
** 1 sigma = square root of (sample std. dev.2 + curve std. dev.2)
** 2 sigma = 2 x square root of (sample std. dev.2 + curve std. dev.2)
where 2 = squared.
[] = calibrated range impinges on end of calibration data set
0* represents a "negative" age BP
1955* or 1960* denote influence of nuclear testing C-14

NOTE: Cal ages and ranges are rounded to the nearest year which may be too precise in many instances. Users are advised to round results to the nearest 10 yr for samples with standard deviation in the radiocarbon age greater than 50 yr.
THE CHARCOAL REMAINS

SRANAGALLOON 1, CO. CLARE, E3713

SARAH COBAIN

De Faoite Archaeology,
Unit 10 Riverside Business Centre,
Tinahely, Co Wicklow
Introduction
The survival of seed and charcoal macrofossils from dryland archaeology sites is dependent upon the water table being high enough to keep the archaeological features in damp/wet and anoxic conditions. This does not usually occur on archaeological sites in Ireland, unless they are located on riverine flood plains or close to lakes. Seeds and charcoal are however preserved abundantly in the form of charcoal and carbonised plant remains as a result of burning activities in features such as hearths, kilns, furnaces, burnt structures and as waste material disposed in ditches and pits.

There were 24 burnt mound sites spanning from the early to late Bronze Age period in date on the N18 Gort to Crusheen road scheme. The burnt mound activity from Caheraphuca 5, 8, 9, 10, 11, Ballyline 3, Drumminacloghaun, Clooneen and Gortavoher dated from the early Bronze Age. Ballyline 1 and 2 and Gortaficka 1 and 2 were from the early to mid Bronze Age and Sranagalloon 1, 3 Caheraphuca 1, 3, 4, 6, 7, 12, Rathwilladoon 4, Monreagh, Monreagh 3 and Derrygarriff 3 were dated to the mid to late Bronze Age. These sites consisted of archaeological features associated with burnt mound activity and included burnt mounds, spread, troughs, pits and gullies. Plant macrofossil and charcoal remains provide valuable information to determine socio-economic activity on archaeology sites. It is the aim of this report to identify the seed and charcoal species recovered from all these sites and to use this information to:

1) provide additional information regarding the function of features sampled
2) interpret the diet and living conditions of the occupants of the site
3) interpret socio-economic and industrial activities on the site
4) infer the composition of the local flora and woodland

Methodology
There were 2 samples to be analysed for charcoal remains. The following methodology was used to identify the plant macrofossil and charcoal fragments.

The number of charcoal fragments to be identified is dependent on the diversity of the flora. A study by Keepax (1988:120–124) has indicated that depending on the location of the archaeology site, 100–400 fragments of charcoal would need to be identified in order to obtain a full range of species diversity. As Britain and Ireland have a narrow flora diversity in comparison to that of mainland Europe, an identification limit of 100 fragments has been deemed sufficient for samples from either of these two countries (Keepax, 1988; cited in Austin, 2005:1). As the majority of the samples contained more than 100 fragments, in accordance with Keepax (1998), a maximum of 100 fragments were identified. Of the samples which contained greater than 100 fragments these were sieved through a 10 mm, 4 mm and 2mm sieve and an equal proportion of each sieve were identified. This was to prevent any bias that might have occurred if only larger pieces were identified (thereby ensuring any potential smaller species are equally represented).

Each charcoal fragment was fractured by hand to reveal the wood anatomy on radial, tangential and transverse planes. The pieces were then supported in a sand bath and identified under an epi-illuminating microscope (Brunel SP400) at magnifications from x40 to x400. The sand bath allowed the charcoal pieces to be manipulated into the flattest possible position to aid identification. As fragments less than 2 mm in size cannot be accurately identified (it is not possible to get a wide enough field of vision to encompass the necessary anatomical features for identification) only fragments above this size were examined. During identification, any notable growth-ring
characteristics, evidence of thermal and biological degradation and any other unusual microscopic features were recorded. Identifications were carried out with reference to images and descriptions by Cutler and Gale (2000) and Heller et al. (2004) and Wheeler et al. (1989). Nomenclature of species follows Stace (1997).

Plant macrofossils
Plant macrofossil remains were retrieved by standard flotation procedures by IAC Ltd using 1 mm and 250 micron sieves. The floated material was sorted and seeds identified using a low-power stereo-microscope (Brunel MX1) at magnifications of x4 to x40. Identifications were made with reference to Cappers et al. (2006), Berggren (1981) and Anderberg (1994). Nomenclature follows Stace (1997).

Results
The plant macrofossil and charcoal results are fully tabulated in Tables 8-9 in the Appendix at the end of the report.

Charcoal identification notes:
The anatomical similarities between (a) the Maloideae species (hawthorn, rowan, crab apple); (b) alder/hazel; (c) sessile/pedunculate oak; (d) wild/bird cherry and (e) poplar/willow mean that it was not possible to identify these taxa to species level (Cutler and Gale, 2000).

E3653 Caheraphuca 1
There were five samples retrieved from Caheraphuca 1. Sample 15 (C29) was recovered from pit C100, C101 and contained hazel, oak, ash, cf hawthorn, and poplar/willow charcoal inclusions. The fill (C58-sample 18) of pit/trough, C57 contained alder/hazel and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments. Burnt spread material C95 (sample 30) contained alder/hazel, birch, ash, Maloideae species (hawthorn/rowan/crab apple) and elm charcoal inclusions. Two samples were retrieved from pit C102. Secondary fill C106 (sample 39) contained alder/hazel charcoal fragments and tertiary fill C107 (sample 35) contained alder/hazel, oak, Maloideae species (hawthorn/rowan/crab apple), poplar/willow and elm charcoal inclusions.

E3653 Caheraphuca 3
Five samples were analysed from Caheraphuca 3. Burnt spread C327 contained no charcoal inclusions and pit/tree hole C332 (sample 21-C333, samples 20 and 32--C334 and sample 38 C344) contained hazel, alder/hazel oak and ash charcoal inclusions. Sample 20 (fill C334) also contained a single carbonised hazelnut shell.

E3653 Caheraphuca 4
Burnt spreads C404 and C405 were retrieved as samples 2 and 3, respectively. C405 contained hazel, alder/hazel, oak, ash, cf hawthorn, blackthorn/sloe, poplar/willow and elm charcoal inclusions. Burnt spread C405 contained alder, hazel, alder/hazel, birch, oak, ash, cf hawthorn, cf crab apple and blackthorn/sloe charcoal inclusions.

E3653 Caheraphuca 5
A single sample (sample 1) was retrieved from the burnt spread C504 at Caheraphuca 5. This sample contained hazel, alder/hazel, birch, oak, ash, Maloideae species (hawthorn/rowan/crab apple), poplar/willow and yew charcoal inclusions.

E3653 Caheraphuca 6
Three samples were retrieved from burnt mound material at Caheraphuca 6. Deposit C604 (sample 3) contained alder and hazel charcoal inclusions, deposit C605 (sample 1) contained alder/hazel, oak, cf hawthorn, blackthorn/sloe and elm charcoal fragments and deposit C608 (sample 12) contained hazel, birch, oak, ash, Maloideae species (hawthorn/rowan/crab apple) and wild/bird cherry charcoal inclusions. Sample 7 was retrieved from fill C617, which was a packing fill supporting timber C612. This fill contained alder, hazel, oak and ash charcoal inclusions.

E3653 Caheraphuca 7
Samples 2 and 7 were retrieved from burnt spread deposits C708 and C709 (respectively). Sample 2 (C708) contained hazel, alder/hazel, birch, oak, Maloideae species (hawthorn/rowan/crab apple) and wild/bird cherry charcoal fragments. Deposit C709 contained alder/hazel, ash, Maloideae species (hawthorn/rowan/crab apple) and elm charcoal inclusions. Trough C715 contained fill C713 (sample 8), which contained alder/hazel, birch, oak and ash charcoal inclusions. Sample 5 was retrieved from the fill (C710) of pit C711. This pit contained alder/hazel, oak, Maloideae species (hawthorn/rowan/crab apple), wild/bird cherry and blackthorn/sloe charcoal inclusions. Pit C712 contained fill C704 (sample 3), which included alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple), wild/bird cherry and blackthorn/sloe charcoal inclusions.

E3653 Caheraphuca 8
Five samples were analysed from burnt mound activity at Caheraphuca 8. Sample 10, 39, 48 and 54 were retrieved from burnt mound spreads C810, C827, C829 and C835 respectively. Sample 10 (C810) contained alder and oak charcoal inclusions and a single carbonised hazelnut shell fragment. Burnt mound spread C827 (sample 48) included alder/hazel and ash charcoal fragments. Alder, hazel, alder/hazel, birch, oak, ash, Maloideae species (hawthorn/rowan/crab apple), cf hawthorn and poplar/willow were recovered from burnt mound spread C829 (sample 54). Sample 88 (C635) contained alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple), cf hawthorn, cf crab apple and yew charcoal fragments. One additional sample (sample 39) was retrieved as a packing fill (C825) located under timber plank C814. This packing fill (C825) contained hazel, alder/hazel, oak, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal inclusions.

E3653 Caheraphuca 9
Sample 2 was retrieved from the fill (C906) of pit C904 and contained alder and ash charcoal inclusions.

E3653 Caheraphuca 10
Two samples were retrieved from burnt mound activity at Caheraphuca 10. Burnt mound spread C1008 was retrieved as sample 4 and contained alder/hazel and oak charcoal fragments. The spread of unburnt stones C1005 (sample 1) contained alder/hazel, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal inclusions.

E3653 Caheraphuca 11
Trough C1109 contained the fill C1118 (sample 5) which included alder/hazel, oak and elm charcoal fragments.

E3653 Caheraphuca 12
Two samples were retrieved from Caheraphuca 12. Sample 1 was taken from burnt mound spread C1203 and contained alder, hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple), wild/bird cherry, yew and elm charcoal fragments.
Sample 2 was retrieved from the fill (C1204) of trough C1204. This fill contained elder, alder, hazel, alder/hazel, oak, ash and wild/bird cherry charcoal inclusions.

E3655 Rathwilladoon 4
The burnt mound spread (C3 – sample 1) at Rathwilladoon 4 contained hazel, alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple) and elm charcoal inclusions and a single carbonised hazel nut shell inclusion. The fill (C6) of boundary ditch, C5 contained hazel, alder/hazel, oak and ash charcoal inclusions.

E3712 Monreagh 1 and 2
Four samples were retrieved from Monreagh 1 and 2. Sample 13 was recovered from the fill (C25) of trough C24 and contained alder, hazel, alder/hazel, birch, oak, ash, Maloideae species (hawthorn/rowan/crab apple), blackthorn/sloe and yew charcoal fragments. Fill C36 (sample 18) from trough C35 contained alder/hazel, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments. Sample 21 was retrieved from fill C41 within pit C40. This fill contained ash and Maloideae species (hawthorn/rowan/crab apple) charcoal inclusions. Sample 14 was retrieved from fill C27 within well C26. This sample contained elder, hazel, oak, cf hawthorn and wild/bird cherry.

E3713 Sranagalloon 1
Sample 2 was retrieved from burnt mound spread C5 and contained alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple), poplar/willow and elm charcoal inclusions. Trough C8 contained fills C11, C12, C9 which were retrieved as sample 22. This sample contained hazel, alder/hazel, birch, oak, as, traveller’s joy and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments.

E3715 Ballyline 3
Sample 1 (C4) was retrieved from pit C3. This pit contained hazel, alder/hazel, birch, oak, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments. The sample (sample 2) retrieved from burnt mound material, C5, contained hazel, alder/hazel, oak, ash, cf hawthorn and elm charcoal inclusions.

E3716 Derrygarriff 3
Three samples were retrieved from burnt mound activity at Derrygarriff 3. Sample 8 was recovered from burnt mound material (C3) and contained alder/hazel, ash, Maloideae species (hawthorn/rowan/crab apple), cf hawthorn and poplar/willow charcoal fragments. Hazel, alder/hazel, birch, ash, Maloideae species (hawthorn/rowan/crab apple), wild/bird cherry, poplar/willow and elm charcoal inclusions were obtained from fill C5 (sample 1) within trough C4. Sample 6 was retrieved from the fill (C8) of trough C6 and contained alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple) and wild/bird cherry charcoal fragments.

E3717 Ballyline 1 and 2
Troughs C22 and C6 were analysed for charcoal remains from burnt mound activity at Ballyline 1 and 2. The fill (C25-sample 1) of trough C22 contained alder/hazel, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments. Sample 9 was recovered from fill C7 within trough C6. This fill contained alder, hazel, alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple) and poplar/willow charcoal inclusions.

E3720 Drumminacloghaun 1
Burnt spread material C3 (sample 2) from Drumminacloghaun 1 contained alder/hazel, oak, ash, yew and elm charcoal fragments and a single carbonised
yellow water lily seed. The fill (C6-sample 5) from trough C4 only contained three ash charcoal fragments.

E3722 Clooneen 1
There were three samples retrieved from burnt mound activity at Clooneen 1. Sample 6 was recovered from burnt spread material C3 and contained alder, hazel, alder/hazel, ash and poplar/willow charcoal inclusions. A packing fill layer (C15—sample 10) which was located under the wooden base of trough C8 contained alder and ash charcoal inclusions. The fill C7 (sample 3) from pit C7 contained alder, hazel, alder/hazel and ash charcoal inclusions.

E3897 Sranagalloon 3
There were eight samples recovered from burnt mound activity at Sranagalloon 3. The spread (C34-sample 40) from possible up cast material contained birch, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal inclusions. Burnt spread material C3 (sample 38) contained hazel, alder/hazel, cf hawthorn, cf crab apple, blackthorn/sloe and elm charcoal inclusions. Two fills (C30 and C35—samples 28 and 27 respectively) were recovered from trough C28. Fill C30 contained alder, hazel, alder/hazel, cf hawthorn, cf crab apple, blackthorn/sloe and elm charcoal inclusions and a single carbonised hazelnut shell. Fill C35 contained hazel, alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple) and poplar/willow charcoal fragments and a single carbonised hazelnut shell. Trough C50 contained fill C8 (sample 41). This fill included alder, hazel, alder/hazel, ash and cf hawthorn charcoal fragments. Two fills were sampled from pit C19. Sample 10 was taken from fill C22 and contained hazel, ash, wild/bird cherry and poplar/willow charcoal inclusions. Sample 12 (C27) contained alder/hazel and poplar/willow charcoal fragments.

E3898 Gortaficka 1 and 2
A single sample (sample 1) was recovered from burnt spread material C3 at Gortaficka 1. This sample contained hazel, alder/hazel, ash and wild/bird cherry charcoal inclusions. Two samples were taken from burnt mound material at Gortaficka 2. Sample 5 was retrieved from deposit C10 and contained alder, hazel, alder/hazel, birch, oak, ash, Maloideae species (hawthorn/rowan/crab apple), poplar/willow and yew charcoal inclusions. Deposit C20 (sample 8) contained hazel, alder/hazel, oak, ash and yew charcoal fragments. Fill C41 (sample 35) from within trough C39 and contained wayfaring tree, alder/hazel, traveller’s joy and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments. Sample 20 was retrieved from fill 29 within pit C21. This sample contained hazel, alder/hazel, oak, ash, Maloideae species (hawthorn/rowan/crab apple), poplar/willow, yew and elm charcoal inclusions. Drainage gully C53 contained fill C55. The sample from this fill (sample 37) contained two fragments of wayfaring tree charcoal.

E3984 Gortavoher 1
There were two samples recovered from burnt mound material deposits from Gortavoher 1. Sample 1 was recovered from deposit C3 and contained wayfaring tree, hazel, birch, oak, ash, Maloideae species (hawthorn/rowan/crab apple), cf crab apple, blackthorn/sloe, poplar/willow, yew and elm charcoal fragments and carbonised mustard/cabbage, tufted vetch and water pepper seeds. Deposit C6 (sample 2) contained hazel, alder/hazel, birch, oak, Maloideae species (hawthorn/rowan/crab apple), poplar/willow, yew and elm charcoal inclusions.

E4037 Monreagh 3
Three samples were retrieved from burnt mound activity at Monreagh 3. Sample 2 was recovered from burnt mound material C3 and contained alder, hazel,
alder/hazel, oak, ash and elm charcoal inclusions and two carbonised hazelnut shell inclusions. The fill C11 (sample 3) from trough C10 contained alder/hazel, oak, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal fragments and uncharred blackberry and stone bramble seeds. The fill from pit C8 contained alder/hazel, birch, oak, ash and Maloideae species (hawthorn/rowan/crab apple) charcoal inclusions.

Discussion

Burnt mound/spreads

Table 1: Burnt mounds, spreads and deposits excavated on the N18 road scheme (exclusively those analysed for plant macrofossils and charcoal)

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Details</th>
<th>Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3653 Caheraphuca 1</td>
<td>Burnt spread material</td>
<td>C95</td>
</tr>
<tr>
<td>E3653 Caheraphuca 3*</td>
<td>Burnt spread material</td>
<td>C327</td>
</tr>
<tr>
<td>E3653 Caheraphuca 4</td>
<td>Burnt mound material</td>
<td>C404, C405</td>
</tr>
<tr>
<td>E3653 Caheraphuca 5</td>
<td>Burnt spread material</td>
<td>C504</td>
</tr>
<tr>
<td>E3653 Caheraphuca 6</td>
<td>Burnt mound material</td>
<td>C604, C605, C608</td>
</tr>
<tr>
<td>E3653 Caheraphuca 7</td>
<td>Burnt deposit</td>
<td>C708, C709</td>
</tr>
<tr>
<td>E3653 Caheraphuca 8*</td>
<td>Burnt spread</td>
<td>C810</td>
</tr>
<tr>
<td>E3653 Caheraphuca 8</td>
<td>Shallow burnt spread</td>
<td>C827, C835</td>
</tr>
<tr>
<td>E3653 Caheraphuca 8</td>
<td>Burnt spread material</td>
<td>C829</td>
</tr>
<tr>
<td>E3653 Caheraphuca 10</td>
<td>Burnt mound material</td>
<td>C1008</td>
</tr>
<tr>
<td>E3653 Caheraphuca 10</td>
<td>Spread of unburnt stones</td>
<td>C1005</td>
</tr>
<tr>
<td>E3653 Caheraphuca 12</td>
<td>Burnt mound material</td>
<td>C1203</td>
</tr>
<tr>
<td>E3655 Rathwilladoon 4*</td>
<td>Burnt mound material</td>
<td>C3</td>
</tr>
<tr>
<td>E3713 Sranagalloon 1</td>
<td>Burnt spread material</td>
<td>C5</td>
</tr>
<tr>
<td>E3715 Ballyline 3</td>
<td>Burnt spread material</td>
<td>C5</td>
</tr>
<tr>
<td>E3716 Derrygarriff 3</td>
<td>Burnt spread material</td>
<td>C3</td>
</tr>
<tr>
<td>E3720 Drumminacloghaun 1*</td>
<td>Burnt spread material</td>
<td>C3</td>
</tr>
<tr>
<td>E3722 Clooneen 1</td>
<td>Burnt mound material</td>
<td>C3</td>
</tr>
<tr>
<td>E3897 Sranagalloon 3</td>
<td>Spread – up cast from trough</td>
<td>C34</td>
</tr>
<tr>
<td>E3897 Sranagalloon 3</td>
<td>Burnt spread material</td>
<td>C3</td>
</tr>
<tr>
<td>E3898 Gortaficka 1</td>
<td>Burnt spread material</td>
<td>C3</td>
</tr>
<tr>
<td>E3898 Gortaficka 2</td>
<td>Burnt mound material</td>
<td>C10, C20</td>
</tr>
<tr>
<td>E3984 Gortavoher 1*</td>
<td>Burnt mound material</td>
<td>C3, C6</td>
</tr>
<tr>
<td>E4037 Monreagh 3*</td>
<td>Burnt mound material</td>
<td>C3</td>
</tr>
</tbody>
</table>

* - also contained plant macrofossils

Table 1 shows context numbers of the burnt mound deposits/burnt spreads from each site sampled on the N18. This activity involved heating stones on a hearth and then placing these into troughs filled with water, thereby heating or boiling the water. The stones were then raked out of the trough and ultimately piled as waste material into a horseshoe-shaped mound around the working area. The mounds usually contain burnt stones along with frequent charcoal inclusions which represent the remains of the firing debris used within the hearth/s to heat the stones. All of the burnt spreads/mounds along the N18 route (with the exception of C317 Caheraphuca 3) contained moderate to frequent charcoal inclusions which would represent the firing debris from fuel used within the hearths. The burnt spread samples from Caheraphuca 3 (C327), Caheraphuca 8 (C810), Rathwilladoon 4 (C3), Gortavoher 1 (C3) and Monreagh 3 (C3) also contained carbonised hazelnut shells which may
represent either remains of food consumed during burnt mound activities or hazelnuts still attached to the hazel branches which used as fuel.

The spread of unburnt stones (C1005) at Caheraphuca 10 and spread of uncast material (C34) at Sranagalloon 3 both contained only occasional charcoal inclusions as a result no further information about the use/function of these two spreads can be deduced from palaeoenvironmental activity.

Troughs

Table 2: Troughs excavated on the N18 road scheme (exclusively those analysed for plant macrofossils and charcoal)

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Details</th>
<th>Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3653 Caheraphuca 1</td>
<td>Fill of pit/trough C57</td>
<td>C58</td>
</tr>
<tr>
<td>E3653 Caheraphuca 6</td>
<td>Fill of trough – fill supporting timber C612</td>
<td>C617</td>
</tr>
<tr>
<td>E3653 Caheraphuca 7</td>
<td>Fill of trough, C715</td>
<td>C713</td>
</tr>
<tr>
<td>E3653 Caheraphuca 11</td>
<td>Top fill of waste pit/trough, C1109</td>
<td>C1118</td>
</tr>
<tr>
<td>E3653 Caheraphuca 12</td>
<td>Fill of trough C1205</td>
<td>C1204</td>
</tr>
<tr>
<td>E3712 Monreagh 1 and 2</td>
<td>Fill of trough C24</td>
<td>C25</td>
</tr>
<tr>
<td>E3712 Monreagh 1 and 2</td>
<td>Fill of trough C35</td>
<td>C36</td>
</tr>
<tr>
<td>E3713 Sranagalloon 1</td>
<td>Fill of trough, C8</td>
<td>C9, C11, C12</td>
</tr>
<tr>
<td>E3716 Derrygarriff 3</td>
<td>Fill of trough C4</td>
<td>C5</td>
</tr>
<tr>
<td>E3716 Derrygarriff 3</td>
<td>Fill of trough, C6</td>
<td>C8</td>
</tr>
<tr>
<td>E3717 Ballyline 1 and 2</td>
<td>Fill of trough C22</td>
<td>C25</td>
</tr>
<tr>
<td>E3717 Ballyline 1 and 2</td>
<td>Fill of trough, C6</td>
<td>C7</td>
</tr>
<tr>
<td>E3720 Drumminacloghaun 1</td>
<td>Fill of trough, C4</td>
<td>C6</td>
</tr>
<tr>
<td>E3722 Clooneen 1</td>
<td>Layer under wooden base of trough, C8</td>
<td>C15</td>
</tr>
<tr>
<td>E3897 Sranagalloon 3</td>
<td>Fill of trough C28</td>
<td>C30, C35</td>
</tr>
<tr>
<td>E3897 Sranagalloon 3</td>
<td>Fill of trough, C50</td>
<td>C8</td>
</tr>
<tr>
<td>E3898 Gortaficka 2</td>
<td>Fill of trough, C39</td>
<td>C41</td>
</tr>
<tr>
<td>E4037 Monreagh 3 *</td>
<td>Fill of trough C10</td>
<td>C11</td>
</tr>
</tbody>
</table>

* - also contained plant macrofossils

The troughs outlined in Table 2 from Sranagalloon 1, Caheraphuca 1, 7, 11, 12, Monreagh, 1 and 2, Derrygarriff 3, Ballyline 1 and 2 and Drumminacloghaun 1 all contained a mixture of silty material, burnt stones and charcoal indicating that they were backfilled with burnt mound material soon after use, either deliberately or through collapse or animal treading whereas the troughs from Sranagalloon 3 Gortaficka 2 and Monreagh 3 contained less charcoal and burnt stones which suggests they silted in naturally. Fill C15 was located under the wooden base of trough C8 at Clooneen 1 and C617 was located under timber plank C612 at Caheraphuca 6. These fills have been interpreted as deliberately placed packing fills for their respective trough structures. The charcoal within these fills is most likely intrusive and was derived from the charcoal/stones being deposited into the trough above.

The hazelnut shells recovered from fills C30 and C35 within trough C28 at Sranagalloon 3 were most likely deposited through disposal of hazelnut shells into the fire after consumption on the site, or through hazelnuts attached to branches used as fuel in the fires. The blackberry and stone bramble seeds were uncharred
and most likely silted into or deposited by birds/ small mammals into trough C10 at Monreagh after it went out of use.

Pits

Table 3: Pits excavated on the N18 road scheme (exclusively those analysed for plant macrofossils and charcoal)

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Details</th>
<th>Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3653 Caheraphuca 1</td>
<td>Fill of pits C100 and C101</td>
<td>C29</td>
</tr>
<tr>
<td>E3653 Caheraphuca 1</td>
<td>Secondary (C106) and tertiary (C107) fill of pit C102</td>
<td>C106 and C107</td>
</tr>
<tr>
<td>E3653 Caheraphuca 3</td>
<td>Fills of pit/tree root C332</td>
<td>C333, C334, C344</td>
</tr>
<tr>
<td>E3653 Caheraphuca 7</td>
<td>Fills of pits C711 and C712</td>
<td>C710 and C704</td>
</tr>
<tr>
<td>E3653 Caheraphuca 9</td>
<td>Secondary fill of pit C904</td>
<td>C906</td>
</tr>
<tr>
<td>E3712 Monreagh 1 and 2</td>
<td>Fill of pit, C40</td>
<td>C41</td>
</tr>
<tr>
<td>E3715 Ballyline 3</td>
<td>Fill of pit, C3</td>
<td>C4</td>
</tr>
<tr>
<td>E3722 Clooneen 1</td>
<td>Fill of pit C12</td>
<td>C7</td>
</tr>
<tr>
<td>E3897 Sranagalloon 3</td>
<td>Fill of pit, C19</td>
<td>C22, C27</td>
</tr>
<tr>
<td>E3898 Gortaficka 2</td>
<td>Fill of pit, C21</td>
<td>C22, C29</td>
</tr>
<tr>
<td>E4037 Monreagh 3</td>
<td>Fill of pit</td>
<td>C8</td>
</tr>
</tbody>
</table>

The pits at Caheraphuca 1 (pit C29), Ballyline 3, Clooneen 1, Caheraphuca 3 Caheraphuca 7 Caheraphuca 9, Monreagh 3 and Monreagh 1 and 2 as outlined in Table 3 were all deliberately backfilled with burnt mound material and contained frequent charcoal inclusions. This charcoal can be attributed to residual firing debris from hearths used to heat stones. The pits at Sranagalloon 3, Gortaficka 2, Caheraphuca 1 (C102) and Caheraphuca 3 silted up naturally and the charcoal within these features was most likely residual from firing debris.

Well

Table 4: Well excavated on the N18 road scheme (exclusively those analysed for plant macrofossils and charcoal)

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Details</th>
<th>Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3712 Monreagh 1 and 2</td>
<td>Fill of a well C26</td>
<td>C27</td>
</tr>
</tbody>
</table>

The fill (C27) from well C26 at Monreagh sites 1 and 2 contained frequent charcoal inclusions. There was no burning *in situ* recorded around the edges of this cut and this, together with the burnt stone inclusions, indicates that the well was deliberately backfilled after its final use with charcoal-rich burnt mound material.
Linear features

Table 5: Linear feature excavated on the N18 road scheme (exclusively those analysed for plant macrofossils and charcoal)

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Details</th>
<th>Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3898 Gortaficka 2</td>
<td>Fill of drainage gully C53</td>
<td>C55</td>
</tr>
</tbody>
</table>

The fill (C55) from drainage gully C53 at Gortaficka 2 contained only two fragments of charcoal. It is most likely this residual charcoal accumulated from nearby through natural silting into the drainage gully after the gully went out of use.

Platform/Timber features

Table 6: Timber feature excavated on the N18 road scheme (exclusively those analysed for plant macrofossils and charcoal).

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Details</th>
<th>Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3653 Caheraphuca 8</td>
<td>Burnt material under timber plank, C814</td>
<td>C825</td>
</tr>
</tbody>
</table>

The fill (C825) from under timber plank C814 at Caheraphuca 8 contained only occasional fragments of charcoal. It is most likely this residual charcoal accumulated from nearby burnt mound activity and silted under the timber plank during the use of the structure.

Economic and Industrial Activities

Burnt Mound Activity

The plant macrofossil evidence from the samples recovered from burnt mound activity from sites Gortavoher 1, Monreagh 3, Sranagalloon 1, 3, Rathwilladoon 4, Caheraphuca 3, 8, 12 not provide any definitive explanation for the use of these features. The hazelnut shells recovered are indicative of a food source being consumed, perhaps as a snack during burnt mound use or they could have been attached to hazel branches which were subsequently burnt. The vetch, mustard/pepper, yellow water lily, blackberry and water pepper can all be consumed (discussed below), although they were recovered in very small quantities from these sites suggesting they were accidental inclusions (accidental losses during harvesting, the burning of weeds or they were dropped by animals/birds) rather than an indication of food production.

Fuel use

The woodland species exploited for fuel for burnt mound activities was similar throughout the Bronze Age period. The main fuels used as firing material for burnt mound activity on the N18 were ash, oak and elm. There was a high proportion of oak, ash and elm charcoal fragments which did not show obvious curved growth rings: therefore it is likely the wood was derived from larger branches or stem (trunk) wood which would have been deliberately cut with the intention of burning (rather than opportunistic gathering of brushwood). There was also a proportion of the oak and ash charcoal which did exhibit curved growth rings, which is likely to represent smaller branches. Ash, oak and elm would have been chosen as they have dense heartwood and with good ventilation, and burn slowly, maintaining an even temperature (Cutler and Gale, 2000:120, 205, Stuijs, 2005:145). This is essential for a fire being used to heat up stones as it would require constant heat for relatively
long periods of time; and as collection of wood is a labour intensive activity, selection of species according to their burning properties would have been commonplace. There was also a high percentage of hazel and alder/hazel charcoal from all the N18 sites. Hazel is recorded as a reasonable fuel wood and was widely available within oak woodlands, particularly on the fringes of cleared areas (Grogan et al. 2007:30). It is possible that the hazel was used as a dominant fuel wood where oak and ash was not available.

The remaining charcoal recorded from the N18 sites consisted of elder, wayfaring tree, alder, hazel, birch, traveller’s joy, hawthorn, rowan, crab apple, wild/bird cherry, blackthorn/sloe, poplar/willow and yew. The majority of the charcoal from these species exhibited curved growth rings, which suggests they derived from round wood lateral branches rather than stem/trunk wood. It is therefore likely that these branches were collected as deadwood and used within brushwood bundles as kindling for the fire. Alder, elder, birch, poplar/willow are species that are ideal to use for kindling. They are all anatomically less dense than for example, oak and ash, and burn quickly at relatively high temperatures (Cutler and Gale, 2000:34, 50, 236, Grogan et al. 2007:29, 31). This property makes them good to use as kindling, as the high temperatures produced would encourage the oak and ash to ignite and start to burn.

The hawthorn, rowan, crab apple, yew, wild/bird cherry, blackthorn/sloe have a closer grain anatomical structure, and as a result make reasonable firewood (Grogan et al. 2007:30-31; Cutler and Gale, 2000:196; Stuijts, 2005:144); however, the majority of charcoal from these species originated from small twigs which indicates that rather than being the dominant fuels, these were kindling used to ignite the oak, ash and elm. Wild/bird cherry and blackthorn/sloe can be slow to ignite and burn therefore they need assistance from other species such as alder or birch which burn at high temperatures in order to continue to burn. Travellers joy and wayfaring tree have both been recorded as good fuel woods, however as these species are both small shrub species, and because of their small representation within the charcoal assemblage, it is most likely they were collected inadvertently while gathering other twigs/roundwood for brushwood bundles (Stuijts, 2005:145, Cutler and Gale, 2000:80).

There were several slight percentage changes in species used in the early compared to mid to late Bronze Age as indicated by Figure 1. While these trends have been observed, they must be interpreted with caution because the percentage fragment count cannot be used to deduce the actual abundance of these species within the woodland (see composition of local woodlands section below for a more detailed discussion). Therefore the percentages outlined below can only realistically be used to indicate a ‘presence’/‘absence’ variable for each species within the environment.
The most noticeable percentage change was the decrease in the presence of oak and ash from the early to late Bronze Age period. This can be attributed to the increase in deforestation throughout the Bronze Age period to make way for settlement, agriculture and industrial activities, which resulted in oak and ash becoming less widely available. This trend is mirrored in the pollen core results obtained from Sheeauns Lough in Connemara. Research by Molloy and O'Connell (1991:79) demonstrated a similar trend with a decrease in oak and ash pollen occurring during the late Bronze Age period. The other large percentage change to occur was the drop in yew between the early and late Bronze Age period. Yew was one of the dominant trees along with oak during the late Neolithic period; however, the increase in forest clearance led to a sharp decrease in its presence within oak woodlands. This is again observed in Molloy and O'Connell’s (1991:102) research which shows an increase in yew tree pollen until the early Bronze Age, when its abundance starts to decrease. In tandem with the N18 Gort to Crusheen scheme an environmental study has been carried out in the vicinity of the burnt mound sites at Caheraphuca townland. Unfortunately the analysis was not complete by the time that the final excavation reports were compiled.

Management of the local environment
Fuel wood has been a valuable commodity throughout history and has been systematically cleared for settlement, agricultural and industrial activities from the Neolithic period onwards. There are at least 7000 known examples of burnt mounds in Ireland (Power et al. 1997 cited in Grogan et al. 2007:81) which indicates that their use was widespread throughout the Bronze Age period and subsequently this would have had a huge impact on woodland. Bronze Age, communities would have been
aware of the impact of deforestation, and coppicing would have been introduced to manage and retain this valuable resource. The high volume of hazel and alder roundwood within the charcoal is indicative of woodland management by coppicing. This type of woodland management would have been undertaken by cutting the tree to a stump every five to seven years and allowing it to re-generate. The new stems produced were harvested and used for fuel and construction of other wooden structures. This management ensured that the woodland resource was maintained for future generations (Van der Verf 1991:97; Rackham 1980:103).

Herbaceous taxa and diet
Herbaceous plants were often exploited to be used as herbs in cooking, vegetables or eaten raw in salads, all of which would have helped add flavour to food and to provide vitamins, minerals and additional fibre. Cabbage/mustard has been recorded as being eaten raw as salad, boiled down and used as potage in stews and soups and as a vegetable similar to spinach (Behre 2008:67-8). Vetches were also retrieved on the site and are recorded to have been used to thicken stews. Water pepper is also present. It has a very acrid taste and for this reason, its seeds have been used for spices in food (Timson 1966:817). There is also evidence of fruit seeds and nuts – stone bramble and blackberries. These berries would have provided additional vitamin C and were possibly eaten raw or added into tarts/cakes (Pearson 1997: 14). Hazelnut shells were also recovered from various sites. The consumption of hazelnuts would have provided a valuable source of vitamins and minerals and would be eaten raw or could be crushed and added to stews (Pearson 1997:13).

All these species have been recorded as food through documentary sources, analysis of archaeological ecofacts and also information based on foods we eat today. Macrofossil analysis of the stomach contents of bog bodies from Kayhausen (Oldenburg, Germany), the Grauballe man (Jutland, Denmark), the Tollund man (Jutland, Denmark) and Lindow man (Lindow Moss, Cheshire, Britain) have shown indicated the presence of species such as cabbage/mustard and various fruits and nuts within the stomach contents of these people when they died. As these taxa were all found in Ireland during the prehistoric period, it can be assumed that they would have been selected and consumed (or processed to use in/or with cooking food) in Ireland. Their inclusion within the plant macrofossil record from the N18 may purely be indicative of weed species establishing in disturbed areas of the site, however it cannot be disregarded that some of these species were being exploited and consumed.

Composition of local woodlands and flora
All the archaeological sites within this report were located in areas of wetland, peat or areas prone to flooding as described in Table 7 below.
Table 7: Location of Burnt mound sites on the N18 Gort to Crusheen road scheme

<table>
<thead>
<tr>
<th>Site Name/Code</th>
<th>Description of present day ecological setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3653 Caheraphuca 1</td>
<td>A hollow between two peat basins</td>
</tr>
<tr>
<td>E3653 Caheraphuca 3-12</td>
<td>Located around a peat basin formed on the site of the now drained Caheraphuca Lough</td>
</tr>
<tr>
<td>E3655 Rathwilladoon 4</td>
<td>Located on the edge of a wetland area</td>
</tr>
<tr>
<td>E3712 Monreagh 1 and 2</td>
<td>Undulating peat covered land</td>
</tr>
<tr>
<td>E3713 Sranagalloon 1</td>
<td>Located on an area of flat pasture land, prone to flooding</td>
</tr>
<tr>
<td>E3715 Ballyline 3</td>
<td></td>
</tr>
<tr>
<td>E 3716 Derrygarriff 3</td>
<td>Raised ground in a wetland area</td>
</tr>
<tr>
<td>E3717 Ballyline 1 and 2</td>
<td>Low lying flat land, close to the base of a hill</td>
</tr>
<tr>
<td>E3720 Drumminacloghaun 1</td>
<td>Raised area of pasture land with a natural spring and wetland area to the north</td>
</tr>
<tr>
<td>E3722 Clooneen 1</td>
<td>Located in a peat basin on drained bog land</td>
</tr>
<tr>
<td>E3897 Sranagalloon 3</td>
<td>Located between pasture and peat covered area along the base of a steeply sloping N-S orientated stream valley</td>
</tr>
<tr>
<td>E3898 Gortaficka 1 and 2</td>
<td>Marginal land between a pasture and peat covered area, adjacent to a N-S orientated stream</td>
</tr>
<tr>
<td>E3984 Gortavoher 1</td>
<td>Located at the base of a slope, positioned where the slope ended and an area of peat land began, close to the Scarriff stream</td>
</tr>
<tr>
<td>E4037 Monreagh 3</td>
<td>Located on the edge of a wetland area.</td>
</tr>
</tbody>
</table>

Local flora - Evidence from plant macrofossils

Submerged water plants
There were no submerged water plants retrieved from the N18 burnt mound sites.

Marsh/fen species
Water-pepper and yellow water lily are both species which grow in marshy, waterlogged areas and were found at Gortavoher 1 and Drumminacloghaun 1 (respectively) Water-pepper may possibly have been hand selected to use in foods (as discussed above), however it is most likely that both these species were transported by birds or other small animals and dropped/disposed of on the site.

Opportunistic/ruderal species
Cabbage/mustard, blackberry, stone bramble are all opportunistic species which grow well on cleared/waste ground. These species all could have grown easily within the N18 burnt mound sites (Gortavoher 1 and Monreagh 3 respectively) taking advantage of drier cleared areas and waste ground around the site and adjacent to tracks leading the site. While these are all considered 'weed' species, it cannot be disregarded that these were also food sources during this time, so their inclusion within the archaeological features could indicate their consumption. However as so few were recovered, it most likely signifies their accidental collection with brushwood fuel or was an indication of local flora growing in and around the site.

Dryland species
Vetch was the only dryland species recovered from the burnt mound sites (Gortavoher 1) (Holland 1919:9-10). As these were recovered in small quantities it is most likely they were either dropped by birds or small animals or were inadvertently collected with brushwood and burnt in the fires.

Local woodlands – Evidence from charcoal remains
As asserted by Scholtz (1986) cited in Prins and Shackleton (1992:632), the “Principle of Least Effort” suggests that communities of the past collected firewood from the closest possible available wooded area. If this theory were to be used it would assume that from the species collected the woodland surrounding the site would consist of oak-ash woodland in dryland areas (usually away from the sites) and alder-carr fen in areas close to the sites. Whilst this can be used as the basic theory, other variables affecting wood collection must be taken into account (Prins and Shackleton 1992:632). These include:

1) Selection of particular species in favour of others within the woodland
Oak, ash and elm were likely to have been deliberately selected as fuel to use in a hearth/furnace (used to heat stones for burnt mound activity) as they are considered long lasting and effective fuels (Stuijts 2005:141 and 143) so it is likely they were preferentially searched for and harvested and would have a higher percentage representation within the charcoal assemblage.

2) Deliberately cultivated species
The evidence of hazel and alder coppicing during the Bronze Age is another variable, which by altering and managing the environment would have increased the amount of available wood therefore its representation within the charcoal assemblages.

3) Differential preservation of charcoal/non-uniform survival of charcoal over time
Preservation rate of charcoal can be affected by a number of variables, for example:
 a) Mechanical abrasion on a site with stony subsoil may cause the charcoal fragments to be broken into smaller unidentifiable fragments.
 b) Two identical pieces of wood may fragment into different numbers of charcoal fragments when burnt. Some, all or none of these may be recovered from the archaeological record which would affect possible woodland reconstructions.
 c) The overall heat of the fire may cause the wood to turn to ash and not be represented at all in the archaeological record (Asouti and Austin, 2005:1-5).

As a result of these variables it is not possible to infer from the fragment counts obtained the percentages/numbers of each of these species within the local environment. However, based on the assumption that communities will collect wood from the closest possible source (Scholtz 1986) and, in particular, the collection of economically less important kindling fuel wood (which was most likely obtained from the area close to the site), the charcoal assemblage does suggest that the local vegetation throughout the Bronze Age would have consisted of alder-carr fen in the immediate vicinity of the sites due to their wetland location. There was, however, a large assemblage of charcoal from species indicative of dryland areas which indicate the presence of oak-ash woodland on raised areas/slopes close to the sites.

Alder-carr woodland
The evidence of alder-carr fen woodland indicates a damp to waterlogged environment close to the burnt mound sites. This type of woodland would have consisted of alder, willow and poplar are all trees which thrive in waterlogged and damp soils, particularly in areas close to streams or with a high water table (McVean 1953:451, Stuijts 2005:143 and Cutler and Gale 2000:190). Viburnum and elder are both understorey shrubby plants/small trees which grow in damp, waterlogged soils again adjacent to streams, lakes and in areas with a high water table (Stuijts 2005:145; Aitkinson and Aitkinson 2002:897). Birch is a tree which can tolerate both dry and damp soils and would most likely be located in marginal areas between the damp, waterlogged soil and drier areas, upslope from the burnt mound sites (Stuijts 2005:140).
Oak-Ash woodland
The large assemblage of dryland wood species indicates the presence of an oak-ash woodland, close to the burnt mound sites. This would have consisted of oak, ash and elm trees which would be the dominant large tree species (Cutler and Gale 2000:120, 205, Stuijts 2005:145). On the marginal areas of oak-ash woodlands or in clearings, yew, rowan, hazel, hawthorn, crab apple, wild/bird cherry and blackthorn all thrive. These species are all lower level woodland species and will grow in shaded conditions, however, they are usually located where there is a higher light availability to allow flowers and fruits to develop (Stuijts 2005:142, 144; Cutler and Gale 2000:88, 183, 196). Traveller’s joy is an understory shrub plant which clings to trees within oak woodlands to grow (Cutler and Gale 2000:80).

Conclusion
The archaeological features excavated from the N18 burnt mound sites have provided a rich assemblage of charcoal which allows an interesting insight into the industrial activities of the Bronze Age community. The charcoal remains identified from all burnt mound features (troughs, burnt mounds, burnt spreads, pits, gullies, wooden structures) represented firing debris from the fuel used in hearths to heat stones. These stones would then have been used either to heat/boil water within troughs on site.

The fuel used to heat the stones appears to have been exploited from alder-carr fen woodland consisting of alder, willow, poplar, viburnum and birch, and oak-ash woodland consisting of oak, ash, elm, hazel, yew, rowan, hawthorn, crab apple, wild/bird cherry, blackthorn and traveller's joy. The oak, ash and elm would most likely have provided the main fuels for the fire as they provide long-lasting heat at relatively high temperatures. The remaining species were likely to have been used as kindling material for the fire.

There are several variables that affect the reconstruction of local woodland using charcoal assemblages; however, if the charcoal were to be used as a ‘presence’ indicator it can be assumed that as the fuel wood (in particular kindling material) was usually selected from local woodlands. These charcoal remains have also made it possible to suggest that the woodland in the close vicinity to the N18 burnt mound sites would have consisted of both alder-carr fen in waterlogged areas close to the sites and oak-ash climax community woodland upslope/on higher ground.

References

Bayley, D 2009a Archaeological Stratigraphic Report: N18 Gort to Crusheen Road Scheme A044, E3653 Caheraphuca 1. Unpublished report prepared by Irish Archaeological Consultancy for Galway County Council

Behre, K-E 2008 Collected seeds and fruits from herbs as prehistoric food. Vegetation History and Archaeobotany, 17, 65-73

Grogan, E, Johnston, P, O’Donnell, L 2007 The Bronze Age Landscapes of the Pipeline to the West: An Integrated Archaeological and Environmental Assessment, Wordwell Ltd, Bray: Co Wicklow

Holland, J H 1919 Food and fodder plants. Bulletin of Miscellaneous Information, 112, 1-84

McNamara, S 2009a Archaeological Stratigraphic Report: N18 Gort to Crusheen Road Scheme A044, E3712 Monreagh 1 and 2. Unpublished report prepared by Irish Archaeological Consultancy for Galway County Council

McNamara, S 2009b Archaeological Stratigraphic Report: N18 Gort to Crusheen Road Scheme A044, E3717 Ballyline 1 and 2. Unpublished report prepared by Irish Archaeological Consultancy for Galway County Council
McNamara, S 2009c Archaeological Stratigraphic Report: N18 Gort to Crusheen Road Scheme A044, E3720 Drumminacloghaun 1. Unpublished report prepared by Irish Archaeological Consultancy for Galway County Council

Molloy, K and O’Connell, M 1991 Palaeoecological investigations towards the reconstruction of woodland and land-use history at Lough Sheeauns, Connemara, western Ireland, 67, 75-113

Nunan, J 2009e Archaeological Stratigraphic Report: N18 Gort to Crusheen Road Scheme A044, E3898 Gortaficka 1 and 2. Unpublished report prepared by Irish Archaeological Consultancy for Galway County Council

Rackham, O 1980 The medieval landscape of Essex. In Buckley, D G (ed.) *Archaeology in Essex to AD1500*. Council for British Archaeology, Research Report No. 34

Scholtz, A 1986 *Palynological and Palaeobotanical Studies in the Southern Cape*, MA Thesis of Stellenbosch, Stellenbosch, South Africa

Stace, C 1997 *A New British Flora*. Cambridge: Cambridge University Press

Appendix

Table 8: Charcoal species identified from E3713 Sranagalloon 1, Co Galway.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>2</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill Number</td>
<td>C5</td>
<td>C11_C12_C9</td>
</tr>
<tr>
<td>Cut Number</td>
<td>N/A</td>
<td>C8</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Common Name</td>
</tr>
<tr>
<td>Betulaceae</td>
<td>Corylus avellana</td>
<td>Hazel</td>
</tr>
<tr>
<td></td>
<td>Alnus glutinosa /Corylus avellana</td>
<td>Alder/hazel</td>
</tr>
<tr>
<td>Fagaceae</td>
<td>Betula spp</td>
<td>Birch</td>
</tr>
<tr>
<td></td>
<td>Quercus robur/ petraea</td>
<td>Pedunculate(sessile oak</td>
</tr>
<tr>
<td>Oleaceae</td>
<td>Fraxinus excelsior</td>
<td>Common/European Ash</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>Clematis vitalba</td>
<td>Traveller’s joy</td>
</tr>
<tr>
<td>Roseaceae</td>
<td>Maloideae spp (Crataegus monogyna/Sorbus spp/Malus sylvestris)</td>
<td>Hawthorn/rowan/crab apple</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>Populus spp/Salix spp</td>
<td>Poplar/Willow</td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>Ulmus glabra</td>
<td>Elm</td>
</tr>
<tr>
<td></td>
<td>Indeterminate</td>
<td>2</td>
</tr>
</tbody>
</table>

Total fragments identified: 100 46

NB – All plant macrofossil material is carbonised unless otherwise stated.
AN ANALYSIS OF THE WOOD
EXCAVATED FROM A TROUGH,
SRANAGALLOON 1, CO. CLARE, E3713

ELLEN O’CARROLL

12 St. Peters Terrace, Glenageary
Co. Dublin
archaeology@eoc.ie
1. Introduction
Nine wood samples from Sranagalloon 1 townland were analysed by the author. Sranagalloon 1 comprised of a burnt spread associated with a timber lined trough. The wood assemblage, although undated, possibly relates to the Bronze Age period. The wood was sampled from the lining of a trough. The timbers were in poor condition, intermixed with clay and stone. Some of the samples were only small scraps of wood.

The analysis presented here concentrates on species identification, species selection and the composition of the local woodland during the Bronze Age period in the area surrounding Sranagalloon. Woodworking analysis which is sometimes a useful indicator of tool types being used at any given period was also undertaken.

The work undertaken here at Sranagalloon townland will add important information to the rapidly expanding database of environmental indicators and use of woodlands particularly in relation to the Bronze Age period of County Clare. This area of work is especially important in Ireland where there were no written records up to the 18th century relating to the amount and type of woodland (McCracken 1971, 15).

2. Methods
The wood was firstly washed and then carefully examined for signs of toolmarks or surface treatment and was then identified to species under a microscope. The process for identifying wood, whether it is charred, dried or waterlogged is carried out by comparing the anatomical structure of wood samples with known comparative material or keys (Schweingruber 1990). Thin slices were taken from the transversal, tangential and longitudinal sections of each piece of wood and sampled using a razor blade. These slices were then mounted on a slide and glycerine was painted onto the wood to aid identification. Each slide was then examined under a microscope at magnifications of 10x to 450x. By close examination of the microanatomical features of the samples the species were determined. The diagnostic features used for the identification of wood are micro-structural characteristics such as the vessels and their arrangement, the size and arrangement of rays, vessel pit arrangement and also the type of perforation plates.

All wood samples were analysed at the N18 site offices in Crusheen, Co. Clare between the 30 June and the 1 July 2008. Where appropriate, the samples were measured and described in terms of their function and wood technology. This included point types, split types and individual toolmarks such as facets (individual tool marks) and tool signatures.

The annual tree rings were counted partially under a microscope and partially by eye therefore it is only an approximate age. The annual tree-ring counts for the split timbers do not give a real estimate of the age of the parent tree when it was cut down as splitting implies division and therefore only partial remains of the parent tree will survive. Average growth rates were also established. A fast growth-rate is around 4mm per year. As different factors (weather and soil conditions) determine growth rates of trees and growth-rates vary across each sample average growth rates were calculated for each sample. The growth-rates for some samples varied significantly therefore these samples were classified as slow to moderate, moderate to fast and so on (see Appendix).
3. Definitions of Element Types and woodworking terminology

Constructional Elements

Brushwood: Stems or rods measuring 6cm or less in diameter.

Roundwood: A piece of worked or unworked wood in the round and over 6 cm in diameter.

Vertical Stake/Post: Upright brushwood or roundwood driven vertically or at an angle into the ground. Sometimes but not always used for stabilization.

Horizontal: Brushwood/roundwood or split timber laid flat on the ground.

Twigs: Small shoots or branches measuring around 1 cm in diameter.

Split timber: Wood converted from the round including planks, half splits and split pegs.

4. Description of feature types

The site consisted of a spread of heat-affected stones and charcoal-rich, silty clay measuring 9.30 m x 5.95 m to a depth of 0.42 m. A modern open drain cut the burnt mound at its southern edge. The open drain extended in an east–west direction through the burnt spread and also cut away the southern limits of a trough.

The trough consisted of a timber-planked base. The timber planks measured approximately 0.18 m x 0.80 m x 0.05 m. The pit into which the timber base was situated was sub-oval in plan, 2.20 m x 1.15 m x 0.44 m, with a sharp break of slope at the top, steep irregular sides and a flat base. A large, flat stone, orientated east–west, was placed at the northern edge of the trough and smaller slab-like stones were placed on the eastern and western edges. The larger of the stones measured 1.08 m x 0.47 m x 0.18 m. It is possible these stones were placed *in situ* as retaining slabs to prevent the stone debris tumbling back into the trough.

5. Results

A total of 9 wood samples were analysed with regard to species identification, species selection and wood working technology (Appendix).

The analysed samples were all identified as *Alnus glutinosa* (alder). The timbers were in a poor state of preservation and very little information could be obtained from the analysed samples with regards woodworking technology, tree ring growth and surface treatments. Timber no. 3 and 4 were both radial split planks which is where the timbers are split along the length of their rays.

6. Discussion of Wood Assemblage

The aims of the study were:

1. to determine the types of woods selected for use as structural wood within excavated features.
2. to re-construct the environment that the wood was selected from and assess the conditions under which the local woodlands grew through tree ring analysis.
3. to establish whether any wood was selected from coppiced or managed woodland.
4. to determine and analyse any woodworking present on the samples

Wood was a vital and widely used raw material from prehistoric to medieval times although its importance is rarely reflected in the analysis of archaeological assemblages mainly due to its perishable nature. It is important to note that people in
prehistoric, early Christian and medieval communities were mainly dependant on woodland resources for the construction of buildings and for the manufacture of most implements. The woods in a surrounding catchment area were exploited and often managed to provide an essential raw material for the community. The economic importance of wood cannot be over-estimated. A study of the range of species on an archaeological site offers us an indication of the composition of local woodland in its period of use.

Large assemblages of wood from the numerous road schemes are currently under excavation and subsequent analysis of the sampled wood is currently on-going in Ireland. To date very little of this analysis is published therefore comparisons are somewhat difficult. The Bronze Age Landscapes of the pipeline to the west is one such publication and this is used for comparative purposes here (Grogan, O’ Donnell & Johnston 2007). From preliminary analysis of some of these assemblages it is clear that oak was the most common species used for wall-posts and planks, hazel was preferred for wattle structures and species such as blackthorn, ash, willow, alder, birch and holly were utilised for a variety of other structural requirements. Alder, ash and oak are the most frequent species used in the construction of plank-lined troughs while hazel and ash are selected for posts also used in the construction of wattle troughs.

One taxon (alder) was present in the wood samples from Sranagalloon 1. The trough was lined with radial split alder planks. The wood for use within the trough may have been collected from the alder trees growing close to the burnt mound site as evidenced in the wood analysed from the excavations at Caheraphuca 8 and Caheraphuca townland also along the N18 Gort to Crusheen road scheme (O’ Carroll, unpublished post excavation report, 2008).

Alder is a widespread native tree and prefers wet habitats along stream and river banks. It is an easily worked and split timber and is therefore quite commonly manufactured into planks. Alder poles were a favourite timber for underground foundations in damp or wet conditions. It was used as piles under houses, bridges, boat jetties, canal lock gates, pumps and troughs. The timber can resist decay in a wet environment almost indefinitely. Venice floats partly on the strength of alder trees.

7. Comparative material
The analysis completed within the Sranagalloon area of Co. Clare adds to the growing amount of information obtained from the analysis of wood from burnt mound sites excavated in Ireland and in particular in Co. Clare. Analysis from various sites in Ireland shows that hazel was nearly always used for wattle troughs while alder, ash and oak trees were generally the timbers used for split planks. A range of taxon was also selected for posts at burnt mound sites.

Wood identified from Caheraphuca 4, 5, 6 and 8 contained a similar array of taxa which included alder used for the lining of a water feature (Caheraphuca 3) and a trough (Caheraphuca 4) as well as naturally growing oak, alder and pine trees (O’ Carroll, 2008, unpublished post excavation reports). A similar array of taxa was identified from a nearby excavated burnt mound site called Sranagalloon 3. Split alder wood identified from a possible water feature was identified as was oak, pine and alder natural wood (O’ Carroll, 2008).

Wood from troughs identified from the N11 Rathnew to Arklow road A022-44 (C58) & A022-41 (C11) show that alder along with hazel was the main species used in the construction of the troughs and the associated platforms (O’ Carroll 2006,
unpublished wood report, IAC/NRA). Also nearby in Charlesland, Co. Wicklow, charcoal and wood were analysed from four burnt mounds by O’Donnell, dating from the early to the late Bronze Age. The wood from the two burnt mounds sites was mainly alder along with some hazel (O’Donnell, unpublished post excavation report for Margaret Gowen & Company).

Work carried out along the gas pipeline to the west show that the main woods used for the construction of troughs was oak (O’Donnell 2007, 40).

Alder, hazel, ash and oak were the preferred taxon used for the construction of the wooden troughs, platforms and windbreaks along the N5 Charlestown by-pass (O’Carroll, unpublished wood report for the N5, Mayo Co. Council). The analysis from those excavations showed that oak, alder and ash were preferred for split planks while a variety of species were used as vertical posts. Alder planks were more apparent in the one particular area or townland (Sonnagh) and oak in another (Fauleens). It is probably true to say that wood selection is related to the localised vernacular nature of these burnt mound sites whereby small extended families were constructing the troughs for burnt mounds using local trees and timbers.

8. Conclusions & Summary on Wood Assemblage
One taxon was identified in the wood samples from Sranagalloon 1 E3713. The identified samples were all identified as *Alnus glutinosa* (alder). Two timbers were recorded as radial split alder wood selected and used in the construction of the wooden trough associated with the burnt mound spread. The alder wood used to line the wooden trough was possibly selected from nearby to the site, possibly from the natural wood growing in the area.

The wood analysis indicates that the excavated site was located close to a wetland environment, which is a typical location for *fulacht fiadh* or burnt mound sites as alder will grow in a wetland environment.

9. Woodworking evidence
Two of the alder timbers examined from the trough were radial split. In radial conversion, the roundwood is divided into boards along the natural radial axis from the centre of the log towards the bark. In tangential conversion, roundwood is divided into boards across the log, taking no advantage of the anatomy of the wood. There was no other tooling present on the wood remains examined from Sranagalloon 1.

10. References

O’ Carroll, E 2006 The analysis of wood and charcoal from the N11, Arklow to Rathnew, Co. Wicklow, Unpublished report for the NRA/Wicklow County Council.

O’ Carroll, E 2008 The analysis of wood and charcoal from the N18, Gort to Crusheen, Unpublished report for the NRA/Galway County Council.
O’ Carroll, E 2008 *The analysis wood remains from Caheraphuca 5, 8 and 6a, Co. Clare* Unpublished post excavation report, IAC and NRA.

Appendix 1: Catalogue of identified wood

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Context</th>
<th>Timber No.</th>
<th>Element type</th>
<th>Feature type</th>
<th>Identification</th>
<th>Length</th>
<th>Diameter</th>
<th>Age</th>
<th>Growth Rate</th>
<th>Woodworking evidence</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11</td>
<td>1</td>
<td>Scraps of wood</td>
<td>Trough</td>
<td>Alder</td>
<td>0.7 m</td>
<td>0.2 m</td>
<td>Indt. Indt.</td>
<td>No</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>2</td>
<td>Plank</td>
<td>Trough</td>
<td>Alder</td>
<td>0.8 m</td>
<td>0.21 m</td>
<td>Indt. Indt.</td>
<td>Split</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>3</td>
<td>Plank</td>
<td>Trough</td>
<td>Alder</td>
<td>1.08 m</td>
<td>0.2 m</td>
<td>40</td>
<td>Radial split</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>4</td>
<td>Plank</td>
<td>Trough</td>
<td>Alder</td>
<td>0.8 m</td>
<td>0.18 m</td>
<td>30</td>
<td>Radial split</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>5</td>
<td>Scraps of wood</td>
<td>Trough</td>
<td>Alder</td>
<td>0.43 m</td>
<td>0.18 m</td>
<td>Indt. Indt.</td>
<td>No</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>6</td>
<td>Scraps of wood</td>
<td>Trough</td>
<td>Alder</td>
<td>0.8 m</td>
<td>0.2 m</td>
<td>Indt. Indt.</td>
<td>No</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>7</td>
<td>Scraps of wood</td>
<td>Trough</td>
<td>Alder</td>
<td>0.6 m</td>
<td>0.1 m</td>
<td>Indt. Indt.</td>
<td>No</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>8</td>
<td>Scraps of wood</td>
<td>Trough</td>
<td>Alder</td>
<td>0.25 m</td>
<td>0.15 m</td>
<td>Indt. Indt.</td>
<td>No</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>9</td>
<td>Scraps of wood</td>
<td>Trough</td>
<td>Alder</td>
<td>0.2 m</td>
<td>0.1 m</td>
<td>Indt. Indt.</td>
<td>No</td>
<td>Discard</td>
<td></td>
</tr>
</tbody>
</table>
PETROGRAPHICAL REPORT ON STONE SAMPLES TAKEN
DURING ARCHAEOLOGICAL EXCAVATIONS AT
SRANAGALLOON 1, CO. CLARE, E3713

DR STEPHEN MANDAL MIAI PGEO

CRDS Ltd
Unit 4 Dundrum Business Park,
Dundrum,
Dublin 14
Introduction
This report is based on the macroscopic (hand specimen) examination of stone samples taken during archaeological excavations in advance of the N18 Gort to Crusheen Road Improvement Scheme. The purpose of the study was to identify the rock types from which the stone objects were made, to highlight potential sources for them, and to comment on their possible function. It is important to note that macroscopic petrographical studies have been considered of limited value in comparison to microscopic (thin section and geochemical analysis) studies. On the other hand, macroscopic studies provide an excellent preliminary assessment tool and have proven to be of considerable value in petrographical studies (e.g. see Mandal 1997; Cooney and Mandal 1998).

Solid Geology and Soils of the Site (see Figure 1)
The bedrock under the site consists of Lower Carboniferous Tubber Formation (TU) (see below).

The geology of the area is predominantly made up of Lower Carboniferous Age rocks. However, older rocks make up the west and southwest of the area; the oldest rocks in the area occur as inliers (areas of older rocks surrounded by younger rocks) of Ordovician age tuff, lavas and clastic sediments, known as the Caher Hill Formation (shown as CH on Figure 1). Silurian Age rocks also occur as inliers in the area, in the form of the Derryfadda Formation (DF), consisting of greywackes, siltstones and mudstones. These are stratigraphically overlain unconformably by the Upper Devonian to Lower Carboniferous Ayle River Formation (AR) of mudstones, siltstones and conglomerates. This formation marks the start of a conformable sequence making up much of the study area, comprising: the Lower Limestone Shale (LLS), sandstone, siltstone and thin limestone; the Ballysteen Formation (BA), fossiliferous dark-grey muddy limestone which includes in this area the Ballynash Member (BAbn), wavy-bedded cherty limestone and this shale; and the Waulsortian Limestones (WA), massive bedded lime-mudstone.

There is a minor gap in the sequence in this area, the next youngest rocks belonging to the Tubber Formation (TU), consisting of crinoidal and cherty limestone and dolomite and the Burren Formation (BU), consisting of pale grey clean skeletal limestone. Both of these formations contain numerous distinct members, all represented in the area. Each of the members consist of a distinctive type of limestone, for example, the Aillwee Member (lower) (BUal) of bedded and massive fossiliferous limestones.

These Lower Carboniferous rocks, which make up much of the Midlands of Ireland, represent the northward return of the sea at the end of the Devonian, c. 360 million years ago, owing to the opening of a new ocean to the south called the Palaeo-Tethys in what is now central Europe.

Bedrock is not generally exposed in the area, instead it is covered by boulder clay, which are the result of glacial action during the last glaciation. Drumlins - an elongated hill formed by glacial action - are common in the area. The soils of the area consist of shallow brown earths (Aalen et al. 1997).

Results

<table>
<thead>
<tr>
<th>Site</th>
<th>Sample</th>
<th>Context</th>
<th>Notes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sranagalloon</td>
<td>2</td>
<td>5 Altered / decayed</td>
<td>Angular to sub-rounded cobbles</td>
<td>Limestone</td>
</tr>
</tbody>
</table>

Irish Archaeological Consultancy
Potential Sources
It is likely that the sources for all of the samples are local. There are abundant sources for limestone of all varieties in the Carboniferous succession. It is, however, important to note that these rock types were not necessarily sourced from bedrock, but could also have come from secondary sources, such as in the glacial tills / sub-soils at the site.

Discussion
While it is not possible to determine a definitive source for these stone samples based on macroscopic examination alone, it can be stated that these rock types are available locally in outcrop and within the glacial tills / sub-soils. It is therefore highly probable that the material in these samples were sourced in the immediate vicinity of the site.

A total of 38 samples were examined from sites across the N18 Gort to Crusheen scheme (see Table 1). Of these 30 are clearly decayed; only 13 are clearly burnt. A total of 33 contain angular to sub-angular blocks of stone; 28 contain rounded to sub-rounded cobbles / pebbles. It is not possible to determine with a degree of certainty whether the material was used in its broken state, or if large blocks were deliberately broken. A total of 24 samples contain limestone and / or cherty limestone as their principal stone type. Of these, one (from Caheraphuca 3; E3653 sample 12) also contains quartzite and sandstone; eight others contain quartzite and three others contain sandstone. A total of 11 samples contain quartzite as their primary stone source; of these three contain limestone, one sandstone, and three both.

Finally, three samples contain sandstone as the primary stone type, one (Gortaficka 1; E3898 sample 1) containing chert and one (Gortaficka 2; E3898 sample 8) containing limestone. Coarse grained sandstone and quartzite of these types are typical of burnt mound material. Limestone is however atypical of burnt mound material – fine grained rock types such as limestone do not absorb heat in the same manner as coarse rock types such as sandstone and dolerite (e.g. see Mandal 2004).

Bibliography

Mandal, S 2004 Petrographical Report on Stone Samples found during Archaeological Investigations relating to the Sligo Inner Relief Road (Licence No. 03E0535). Unpublished report commissioned by ACS Ltd for the NRA.

Figure 1. Geology of the area from Gort to Crusheen (after McConnell et al. 2004)
<table>
<thead>
<tr>
<th>Site</th>
<th>License</th>
<th>Sample</th>
<th>Context</th>
<th>Notes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caheraphuca 10</td>
<td>E3653</td>
<td>1</td>
<td>1005</td>
<td>Not altered</td>
<td>Angular blocks</td>
</tr>
<tr>
<td>Caheraphuca 10</td>
<td>E3653</td>
<td>4</td>
<td>1008</td>
<td>Altered</td>
<td>Angular (cherty limestone) to sub-angular (limestone) blocks</td>
</tr>
<tr>
<td>Caheraphuca 10</td>
<td>E3653</td>
<td>5</td>
<td>1009</td>
<td>Not altered (limestone) altered (quartzite)</td>
<td>Angular (limestone) to sub-rounded (quartzite)</td>
</tr>
<tr>
<td>Caheraphuca 12</td>
<td>E3653</td>
<td>2</td>
<td>1204</td>
<td>Not altered / not burnt</td>
<td>Shattered blocks and rounded cobbles</td>
</tr>
<tr>
<td>Caheraphuca 3</td>
<td>E3653</td>
<td>12</td>
<td>327</td>
<td>Altered / burnt soil</td>
<td>Limestone; quartzite; chert; sandstone</td>
</tr>
<tr>
<td>Caheraphuca 4</td>
<td>E3653</td>
<td>2</td>
<td>4</td>
<td>Heat altered</td>
<td>Angular blocks and broken rounded cobbles</td>
</tr>
<tr>
<td>Caheraphuca 4</td>
<td>E3653</td>
<td>3</td>
<td>5</td>
<td>Not altered / not burnt</td>
<td>Rounded to sub-rounded cobbles</td>
</tr>
<tr>
<td>Caheraphuca 5</td>
<td>E3653</td>
<td>1</td>
<td>504</td>
<td>Altered / burnt</td>
<td>Sub-angular blocks</td>
</tr>
<tr>
<td>Caheraphuca 6</td>
<td>E3653</td>
<td>1</td>
<td>605</td>
<td>Heat altered</td>
<td>Rounded / fractured cobbles</td>
</tr>
<tr>
<td>Caheraphuca 6</td>
<td>E3653</td>
<td>3</td>
<td>604</td>
<td>Not altered / not burnt</td>
<td>Rounded to sub-rounded cobbles</td>
</tr>
<tr>
<td>Caheraphuca 6</td>
<td>E3653</td>
<td>7</td>
<td>617</td>
<td>Heat altered</td>
<td>Rounded to sub-rounded cobbles</td>
</tr>
<tr>
<td>Caheraphuca 7</td>
<td>E3653</td>
<td>2</td>
<td>708</td>
<td>Decayed / burnt</td>
<td>Limestone; sandstone, coarse grained red</td>
</tr>
<tr>
<td>Caheraphuca 7</td>
<td>E3653</td>
<td>7</td>
<td>709</td>
<td>Not altered / not burnt</td>
<td>Angular blocks</td>
</tr>
<tr>
<td>Caheraphuca 8</td>
<td>E3653</td>
<td>48</td>
<td>827</td>
<td>Heat altered</td>
<td>Angular to rounded cobbles</td>
</tr>
<tr>
<td>Caheraphuca 8</td>
<td>E3653</td>
<td>54</td>
<td>829</td>
<td>Altered / decayed</td>
<td>Angular (limestone) & sub-rounded (sandstone)</td>
</tr>
<tr>
<td>Caheraphuca 8</td>
<td>E3653</td>
<td>88</td>
<td>835</td>
<td>Altered / decayed</td>
<td>Angular</td>
</tr>
<tr>
<td>Caheraphuca 1B</td>
<td>E3654</td>
<td>15</td>
<td>29</td>
<td>Altered / decayed</td>
<td>Angular blocks</td>
</tr>
<tr>
<td>Rathwilladoon 4</td>
<td>E3655</td>
<td>1</td>
<td>3</td>
<td>Heat altered</td>
<td>Sub-angular to sub-rounded blocks</td>
</tr>
<tr>
<td>Rathwilladoon 4</td>
<td>E3655</td>
<td>4</td>
<td>6</td>
<td>Decayed (angular blocks)</td>
<td>Angular blocks to rounded pebbles</td>
</tr>
<tr>
<td>Monreagh 2</td>
<td>E3712</td>
<td>13</td>
<td>25</td>
<td>Not altered / not burnt</td>
<td>Limestone; sandstone, coarse grained red</td>
</tr>
<tr>
<td>Monreagh 2</td>
<td>E3712</td>
<td>14</td>
<td>27</td>
<td>Not altered / not burnt</td>
<td>Rounded cobbles</td>
</tr>
<tr>
<td>Sranagalloon 1</td>
<td>E3713</td>
<td>2</td>
<td>5</td>
<td>Altered / decayed</td>
<td>Angular to sub-rounded cobbles</td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
<td>Sample</td>
<td>Size</td>
<td>Alteration</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Ballyline 3</td>
<td>E3715</td>
<td>1</td>
<td>4</td>
<td>Altered</td>
<td>Rounded to sub-angular blocks and fractured cobbles</td>
</tr>
<tr>
<td>Ballyline 3</td>
<td>E3715</td>
<td>2</td>
<td>5</td>
<td>Altered</td>
<td>Rounded to sub-angular blocks and fractured cobbles</td>
</tr>
<tr>
<td>Ballyline 1</td>
<td>E3717</td>
<td>9</td>
<td>7</td>
<td>Not altered/not burnt</td>
<td>Angular to sub-rounded cobbles</td>
</tr>
<tr>
<td>Ballyline 2</td>
<td>E3717</td>
<td>1</td>
<td>25</td>
<td>Altered</td>
<td>Angular to sub-angular blocks</td>
</tr>
<tr>
<td>Drumminacloghaun</td>
<td>E3720</td>
<td>2</td>
<td>3</td>
<td>Altered / decayed</td>
<td>Sub-rounded cobbles</td>
</tr>
<tr>
<td>Clooneen 1</td>
<td>E3722</td>
<td>10</td>
<td>15</td>
<td>Heat altered/shattered</td>
<td>Angular cobbles</td>
</tr>
<tr>
<td>Sranagalloon 3</td>
<td>E3897</td>
<td>1</td>
<td>3</td>
<td>Altered / decayed</td>
<td>Sub-rounded cobbles</td>
</tr>
<tr>
<td>Sranagalloon 3</td>
<td>E3897</td>
<td>6</td>
<td>9</td>
<td>Decayed</td>
<td>Sub-angular blocks</td>
</tr>
<tr>
<td>Sranagalloon 3</td>
<td>E3897</td>
<td>38</td>
<td>3</td>
<td>Heat altered</td>
<td>Sub-angular to sub-rounded blocks</td>
</tr>
<tr>
<td>Sranagalloon 3</td>
<td>E3897</td>
<td>40</td>
<td>34</td>
<td>Altered / decayed</td>
<td>Sub-rounded cobbles</td>
</tr>
<tr>
<td>Sranagalloon 3</td>
<td>E3897</td>
<td>41</td>
<td>8</td>
<td>Heat altered</td>
<td>Sub-angular to sub-rounded blocks</td>
</tr>
<tr>
<td>Gortaficka 1</td>
<td>E3898</td>
<td>1</td>
<td>3</td>
<td>Altered / burnt</td>
<td>Angular to sub-rounded cobbles</td>
</tr>
<tr>
<td>Gortaficka 2</td>
<td>E3898</td>
<td>8</td>
<td>20</td>
<td>Altered / decayed</td>
<td>Sub-angular to sub-rounded blocks</td>
</tr>
<tr>
<td>Gortaficka 2</td>
<td>E3898</td>
<td>9</td>
<td>8</td>
<td>Altered / decayed</td>
<td>Angular blocks</td>
</tr>
<tr>
<td>Derrygarriff 3</td>
<td>E3710</td>
<td>8</td>
<td>3</td>
<td>Altered</td>
<td>Sub-rounded to sub-angular cobbles</td>
</tr>
</tbody>
</table>
LITHIC FINDS REPORT
SRANAGALLOON 1, CO. CLARE, E3713

FARINA STERNKE MA, PHD

Archaeological Consultant (Lithic Analysis)
3 Castleclose Lawn, Blarney, Co Cork
www.lithics.ie
Introduction
One lithic find from the archaeological excavation of a prehistoric site at Sranagalloon 1, Co. Clare was presented for analysis (Table 1). The find is associated with the remains of a burnt mound and a trough.

<table>
<thead>
<tr>
<th>Find Number</th>
<th>Context</th>
<th>Material</th>
<th>Type</th>
<th>Condition</th>
<th>Cortex</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
<th>Complete</th>
<th>Retouch</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3653:10:1</td>
<td>10</td>
<td>Mudstone</td>
<td>Polished Stone Axehead</td>
<td>Burnt</td>
<td>No</td>
<td>117</td>
<td>58</td>
<td>21</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1 Composition of the Lithic Assemblage from Sranagalloon 1 (E3713)

Methodology
All lithic artefacts are examined visually and catalogued using Microsoft Excel. The following details are recorded for each artefact which measures at least 20 mm in length or width: context information, raw material type, artefact type, the presence of cortex, artefact condition, length, width and thickness measurements, fragmentation and the type of retouch (where applicable). The technological criteria recorded are based on the terminology and technology presented in Inizan et al. 1999. The general typological and morphological classifications are based on Woodman et al. 2006. Struck lithics smaller than 20 mm are classed as debitage and not analysed further. The same is done with natural chunks.

Quantification
The lithic is a worked piece of mudstone. The artefact is larger than 20 mm in length and width and was therefore recorded in detail.

Provenance
The artefact was recovered from the natural peat horizon.

Condition:
The lithic survives in a burnt and incomplete condition.

Technology/Morphology:
The artefact (E3713:10:1) is a polished stone axehead fragment. This axe is a rather crude example which probably broke during its use. It is missing its edge and measures 117 mm long, 58 mm wide and 21 mm thick.

Dating:
The polished stone axehead from Sranagalloon 1 is typologically and technologically diagnostic and most likely dates to the late Mesolithic period, based on the presence of flat facets on the broad sides of the axe (Woodman pers. comm.).

Conservation
Lithics do not require specific conservation, but should be stored in a dry, stable environment. Preferably, each lithic should be bagged separately and contact with other lithics should be avoided, so as to prevent damage and breakage, in particular edge damage which could later be misinterpreted as retouch. Larger and heavier items are best kept in individual boxes to avoid crushing of smaller assemblage pieces.
Discussion
The size and composition of the assemblage is typical for Irish burnt mounds. Recent excavations in the south-east of Ireland revealed a similar pattern of very small assemblages found with burnt mounds, e.g. the N25 Waterford bypass (Woodman 2006), a pattern that is replicated elsewhere in Ireland. In fact, many burnt mounds are devoid of lithic artefacts.

Summary
The lithic find from the archaeological excavation at Sranagalloon 1, Co. Clare is a broken polished stone axehead made of mudstone. The axehead most likely dates to the late Mesolithic period and represents a residual find at this site.

This site makes a minor contribution to the evidence for prehistoric settlement in Co. Clare.

Recommendations for Illustration
- Polished Stone Axehead (E3713:10:1)

Bibliography

Woodman, PC 2006 The significance of the lithic assemblages from the archaeological excavations on the Waterford By-Pass. Unpublished Report for Headland Archaeology - Ireland Ltd.

SUMMARY REPORT ON STONE AXE

SRANAGALLOON 1, CO. CLARE, E3713

EMMETT O'KEEFFE

Irish Stone Axe Project,
University College Dublin
Sranagloon, Co. Clare
ISAP: 21623
(E3713:10:1)

Circumstance of discovery: Archaeological Excavation.
Context Archaeological Site.
Collection: Unknown
Petrology: Mudstone

Axel/Adze: Upper portion of mudstone axe. Left side has some flaking scars for most of its length becoming pointed near the break. Right side slightly irregular near butt becoming pointed near break. Clear junction between both sides and butt. Butt is slightly irregular and slightly pointed, some damage near junction with left side. Break has removed blade area and edge, break is perpendicular to long axis of the artefact. EOK

L. 11.7 cm W. 5.8 cm T. 2.1 cm
CATALOGUE OF CLAY PIPE
FROM SRANAGALLOON 1, CO. CLARE, E3713

MAEVE TOBIN MA

Irish Archaeological Consultancy Ltd,
120b Greenpark Road, Bray, Co. Wicklow
<table>
<thead>
<tr>
<th>Find number</th>
<th>Object Type</th>
<th>Material</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3713:1:1</td>
<td>Clay pipe stem</td>
<td>Ceramic</td>
<td>Small fragment of clay pipe stem, cream in colour, circular in section with a central internal hole</td>
<td>L 29 mm, diam 5.5 mm, hole diam 2 mm</td>
</tr>
<tr>
<td>E3713:1:2</td>
<td>Clay pipe stem</td>
<td>Ceramic</td>
<td>Small fragment of thin clay pipe stem, cream in colour, circular in section with a central internal hole</td>
<td>L 27.5 mm, diam 5.5 mm, hole diam 2 mm</td>
</tr>
<tr>
<td>E3713:1:3</td>
<td>Clay pipe stem</td>
<td>Ceramic</td>
<td>Fragment of thin clay pipe stem, white in colour, circular in section with an off centre internal hole</td>
<td>L 29.5 mm, diam 6.5 mm, hole diam 2 mm</td>
</tr>
<tr>
<td>E3713:1:4</td>
<td>Clay pipe stem</td>
<td>Ceramic</td>
<td>Small fragment of thin clay pipe stem, cream in colour, oval in section with a central internal hole</td>
<td>L 29.5 mm, diam 5.5 mm, hole diam 3 mm</td>
</tr>
<tr>
<td>E3713:1:5</td>
<td>Clay pipe bowl</td>
<td>Ceramic</td>
<td>A fragment of thin walled clay pipe bowl, which curves and would have formed part of a cylinder</td>
<td>L 23.5 mm, min. W 13.5 mm, min D 1.5 mm</td>
</tr>
</tbody>
</table>
APPENDIX 3 LIST OF RMP SITES IN AREA

<table>
<thead>
<tr>
<th>RMP No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL018-017</td>
<td>Ringfort Rath</td>
</tr>
<tr>
<td>CL018-018001</td>
<td>Ringfort Cashel</td>
</tr>
<tr>
<td>CL018-018002</td>
<td>House – undetermined date</td>
</tr>
<tr>
<td>CL018-019</td>
<td>Enclosure</td>
</tr>
<tr>
<td>CL018-021</td>
<td>Ringfort Cashel</td>
</tr>
<tr>
<td>CL018-069</td>
<td>Redundant Record</td>
</tr>
<tr>
<td>CL018-071</td>
<td>Redundant Record</td>
</tr>
<tr>
<td>CL018-072</td>
<td>Redundant Record</td>
</tr>
<tr>
<td>CL018-092</td>
<td>Ringfort Rath</td>
</tr>
</tbody>
</table>

See Figure 2 for location.
APPENDIX 4 LIST OF N18 GORT TO CRUSHEEN SCHEME SITE NAMES

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Ministerial Direction No.</th>
<th>NMS Registration Number</th>
<th>Site Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drumminacloghaun 1</td>
<td>A044</td>
<td>E3720</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Ballyboy 1</td>
<td>A044</td>
<td>E3719</td>
<td>Ringditch</td>
</tr>
<tr>
<td>Ballyboy 2</td>
<td>A044</td>
<td>E3718</td>
<td>Ringditch</td>
</tr>
<tr>
<td>Curtaun</td>
<td>A044</td>
<td>E3721</td>
<td>Burnt mounds and early medieval cereal kilns</td>
</tr>
<tr>
<td>Rathwilladoon 2 & 3</td>
<td>A044</td>
<td>E3656</td>
<td>Prehistoric settlement</td>
</tr>
<tr>
<td>Rathwilladoon 4</td>
<td>A044</td>
<td>E3655</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Rathwilladoon 5</td>
<td>A044</td>
<td>E3657</td>
<td>Charcoal production kiln</td>
</tr>
<tr>
<td>Gortavoher 1</td>
<td>A044</td>
<td>E3904</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Monreagh 1 & 2</td>
<td>A044</td>
<td>E3712</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Monreagh 3</td>
<td>A044</td>
<td>E4037</td>
<td>Burnt mounds</td>
</tr>
<tr>
<td>Derrygarriff 1</td>
<td>A044</td>
<td>E3716</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Derrygarriff 2</td>
<td>A044</td>
<td>E3711</td>
<td>Metal production site</td>
</tr>
<tr>
<td>Derrygarriff 3</td>
<td>A044</td>
<td>E3710</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Sranagalloon 1</td>
<td>A044</td>
<td>E3713</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Sranagalloon 2/Site 146</td>
<td>A044</td>
<td>E3714</td>
<td>Enclosure</td>
</tr>
<tr>
<td>Sranagalloon 3</td>
<td>A044</td>
<td>E3897</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Gortaficka 1 & 2</td>
<td>A044</td>
<td>E3898</td>
<td>Burnt mounds</td>
</tr>
<tr>
<td>Clooneen 1</td>
<td>A044</td>
<td>E3722</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Caheraphuca 1</td>
<td>A044</td>
<td>E3654</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>Caheraphuca 3 - 12</td>
<td>A044</td>
<td>E3653</td>
<td>Burnt mounds</td>
</tr>
<tr>
<td>Ballyline 1 & 2</td>
<td>A044</td>
<td>E3717</td>
<td>Burnt mounds</td>
</tr>
<tr>
<td>Ballyline 3</td>
<td>A044</td>
<td>E3715</td>
<td>Prehistoric pit</td>
</tr>
</tbody>
</table>
E3713:10:1